
T E C H N I C A L R E F E R E N C E M A N U A L

Anki Vector

A LOVE LETTER TO THE

LITTLE DUDE

A U T H O R R A N D A L L M A A S

O V E R V I E W This book explores how the Anki Vector was realized in hardware and software.

drawing by Steph Dere

Copyright © 2019-2021 Randall Maas.
All rights reserved.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 ii

RANDALL MAAS has spent decades in Washington and Minnesota. He consults in embedded

systems development, especially medical devices. Before that he did a lot of other things…

like everyone else in the software industry. He is also interested in geophysical models,

formal semantics, model theory and compilers.

You can contact him at randym@randym.name.

LinkedIn: http://www.linkedin.com/pub/randall-maas/9/838/8b1

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 iii

Table of Contents

ANKI VECTOR ... I

A LOVE LETTER TO THE LITTLE DUDE ... I

PREFACE ..1
1. ORGANIZATION OF THIS DOCUMENT ..1
1.1. ORDER OF DEVELOPMENT ...3
1.2. VERSION(S) ...4
1.3. CUSTOMIZATION AND PATCHING ..4
1.4. CODE NAMES OR VECTOR VS VICTOR ...4

CHAPTER 1 ...6

OVERVIEW OF VECTOR ...6
2. OVERVIEW ..6
2.1. COMPELLING CHARACTER ...6
2.2. FEATURES ...7
3. PRIVACY AND SECURITY ..9
4. COZMO ..9
5. ALEXA INTEGRATION .. 10

PART I .. 11

ELECTRONICS DESIGN ... 11

CHAPTER 2 ... 13

ELECTRONICS DESIGN DESCRIPTION ... 13
6. DESIGN OVERVIEW .. 13
6.1. POWER SOURCE AND DISTRIBUTION TREE ... 16
6.2. MANUFACTURING TEST SUPPORT ... 17
7. REFERENCES & RESOURCES ... 17

CHAPTER 3 ... 18

HEAD-BOARD ELECTRONICS DESIGN DESCRIPTION .. 18
8. THE HEAD-BOARD (THE MAIN PROCESSOR BOARD) ... 18
8.1. THE APQ8009 PROCESSOR .. 19
8.2. SPEAKER ... 19
8.3. CAMERA ... 20
8.4. THE LCD ... 20
8.5. POWER MANAGEMENT ... 20
8.6. TRIM, CALIBRATION SERIAL NUMBERS AND KEYS .. 20
8.7. MANUFACTURING TEST CONNECTOR/INTERFACE .. 21
9. REFERENCES & RESOURCES ... 21

CHAPTER 4 ... 22

BACKPACK & BODY-BOARD ELECTRONICS DESIGN DESCRIPTION 22
10. THE BACKPACK BOARD ... 22

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 iv

10.1. BACKPACK CONNECTION ... 23
10.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION ... 23
10.3. OPERATION ... 23
11. THE BODY-BOARD .. 25
11.1. POWER MANAGEMENT ... 26
11.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION ... 29
11.3. STM32F030 MICROCONTROLLER ... 29
11.4. SENSING ... 31
11.5. OUTPUTS .. 33
11.6. COMMUNICATION ... 34
11.7. COMMUNICATION WITH THE HEAD-BOARD ... 34
12. REFERENCES & RESOURCES ... 35

CHAPTER 5 ... 37

ACCESSORY ELECTRONICS DESIGN DESCRIPTION ... 37
13. CHARGING STATION ... 37
14. HABITAT (VECTOR SPACE) ... 38
15. CUBE ... 38
15.1. OVER THE AIR APPLICATION FIRMWARE DOWNLOAD .. 39
15.2. REFERENCES & RESOURCES ... 39

PART II ... 41

BASIC OPERATION ... 41

CHAPTER 6 ... 43

ARCHITECTURE .. 43
16. OVERVIEW OF VECTOR’S COMMUNICATION INFRASTRUCTURE .. 43
16.1. APPLICATION SERVICES ARCHITECTURE ... 44
16.2. EMOTION MODEL, BEHAVIOUR ENGINE, ACTIONS AND ANIMATION ENGINE 46
17. STORAGE SYSTEM ... 47
17.1. ELECTRONIC MEDICAL RECORD (EMR)... 47
17.2. OEM PARTITION FOR OWNER CERTIFICATES AND LOGS .. 49
18. SECURITY AND PRIVACY .. 49
18.1. ENCRYPTED COMMUNICATION ... 50
18.2. ENCRYPTED FILESYSTEM .. 50
18.3. THE OPERATING SYSTEM .. 50
18.4. AUTHENTICATION ... 51
19. CONFIGURATION AND ASSET FILES... 51
19.1. CONFIGURATION FILES .. 51
20. SOFTWARE-HARDWARE LAYERS ... 52
20.1. THE BODY BOARD INPUT/OUTPUT .. 52
20.2. THE LCD DISPLAY .. 52
20.3. THE CAMERA.. 53
21. REFERENCES & RESOURCES ... 53

CHAPTER 7 ... 55

STARTUP ... 55

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 v

22. STARTUP ... 55
22.1. QUALCOMM’S PRIMARY AND SECONDARY BOOT-LOADER ... 55
22.2. ANDROID BOOT-LOADER (ABOOT) .. 56
22.3. RECOVERY BOOT .. 57
22.4. REGULAR SYSTEM BOOT .. 57
22.5. ABNORMAL SYSTEM BOOT... 60
22.6. REGULAR REBOOTS ... 60
23. REFERENCES & RESOURCES ... 60

CHAPTER 8 ... 61

POWER MANAGEMENT .. 61
24. POWER MANAGEMENT ... 61
24.1. BATTERY MANAGEMENT ... 61
24.2. RESPONSES, SHEDDING LOAD / POWER SAVING EFFORTS .. 62
24.3. SLEEP STATES ... 64
24.4. ACTIVITY LEVEL MANAGEMENT .. 65
24.5. SHUTDOWN ... 65
24.6. THE CUBE POWER MANAGEMENT .. 66
25. CHARGING .. 66

CHAPTER 9 ... 67

BASIC INPUTS AND OUTPUTS ... 67
26. BUTTON, TOUCH AND CLIFF SENSOR INPUT ... 67
26.1. TOUCH SENSING INFORMATION .. 68
26.2. TIME OF FLIGHT PROXIMITY SENSOR .. 68
27. BACKPACK LIGHTS CONTROL .. 68

CHAPTER 10 ... 70

INERTIAL MOTION SENSING ... 70
28. MOTION SENSING ... 70
28.1. ACCELEROMETER AND GYROSCOPE .. 70
28.2. TILTED HEAD ... 71
28.3. SENSING MOTION ... 71
28.4. SENSING INTERACTIONS .. 71
29. REFERENCES AND RESOURCES .. 72

PART III .. 73

COMMUNICATION ... 73

CHAPTER 11 ... 75

COMMUNICATION ... 75
30. OVERVIEW OF VECTOR’S COMMUNICATION INFRASTRUCTURE .. 75
31. INTERNAL COMMUNICATION WITH PERIPHERALS ... 76
31.1. COMMUNICATION WITH THE BODY-BOARD ... 76
31.2. SERIAL BOOT CONSOLE ... 76
31.3. USB .. 76
32. BLUETOOTH LE ... 76

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 vi

33. WIFI .. 78
33.1. FIREWALL .. 79
33.2. WIFI CONFIGURATION .. 79
33.3. ACCESS POINT MODE .. 80
34. NETWORK COMMUNICATION ... 80
34.1. COMMUNICATING WITH MOBILE APP AND SDK ... 80
34.2. WEB-VIZ, A VISUAL CHARACTERIZATION TOOL... 82
35. CLOUD SERVERS .. 83
35.1. ROBOT CERTIFICATE .. 84
36. REFERENCES & RESOURCES ... 84

CHAPTER 12 ... 85

BODY-BOARD COMMUNICATION PROTOCOL.. 85
37. COMMUNICATION PROTOCOL OVERVIEW .. 85
37.1. BASIC STRUCTURES.. 86
37.2. THE MESSAGE FRAMES .. 86
37.3. ACKNOWLEDGEMENT AND NEGATIVE ACKNOWLEDGEMENT OF MESSAGES 87
37.4. UPDATING THE FIRMWARE APPLICATION ... 87
37.5. COMMAND-LINE INTERFACE .. 88
38. MESSAGE FORMATS ... 89
38.1. ENUMERATIONS ... 90
38.2. STRUCTURES .. 91
38.3. DATA FRAME FROM BODY BOARD ... 91
38.4. DATA FRAME FROM HEAD BOARD TO BODY BOARD .. 93

CHAPTER 13 ... 94

VECTOR BLUETOOTH LE COMMUNICATION PROTOCOL ... 94
39. COMMUNICATION PROTOCOL OVERVIEW .. 94
39.1. SETTING UP THE COMMUNICATION CHANNEL ... 96
39.2. FRAGMENTATION AND REASSEMBLY .. 97
39.3. ENCRYPTION SUPPORT ... 98
39.4. THE RTS LAYER .. 99
39.5. FETCHING A LOG ... 100
39.6. A BLE SHELL CONNECTION .. 101
40. MESSAGE FORMATS ... 102
40.1. APPLICATION CONNECTION ID .. 103
40.2. BLE SHELL CONNECT.. 104
40.3. BLE SHELL DISCONNECT ... 104
40.4. BLE SHELL TO CLIENT ... 104
40.5. BLE SHELL TO SERVER .. 105
40.6. CANCEL PAIRING ... 106
40.7. CHALLENGE ... 107
40.8. CHALLENGE SUCCESS .. 108
40.9. CLOUD SESSION .. 109
40.10. CONNECT .. 110
40.11. DISCONNECT .. 111
40.12. FILE DOWNLOAD .. 112
40.13. LOG ... 113

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 vii

40.14. NONCE ... 114
40.15. OTA UPDATE... 115
40.16. RESPONSE ... 116
40.17. SDK PROXY ... 117
40.18. SSH ... 118
40.19. STATUS .. 119
40.20. VERSIONS LIST ... 120
40.21. WIFI ACCESS POINT ... 121
40.22. WIFI CONNECT ... 122
40.23. WIFI FORGET ... 123
40.24. WIFI IP ADDRESS .. 124
40.25. WIFI SCAN .. 125

CHAPTER 14 ... 126

CUBE BLUETOOTH LE COMMUNICATION PROTOCOL ... 126
41. CUBE COMMUNICATION PROTOCOL OVERVIEW .. 126
41.1. SENDING THE FIRMWARE APPLICATION ... 126
41.2. RETRIEVING AND STREAMING ACCELEROMETER DATA .. 127
42. CHARACTERISTIC MESSAGE FORMATS .. 128
42.1. STRUCTURES .. 128
42.2. LED CONTROL .. 128
42.3. APPLICATION VERSION ... 129
42.4. BATTERY AND ACCELEROMETER CHARACTERISTIC .. 129
42.5. OTA DOWNLOAD .. 129
42.6. REFERENCES & RESOURCES ... 129

CHAPTER 15 ... 130

THE HTTPS BASED API .. 130
43. OVERVIEW OF THE SDK HTTPS API .. 130
43.1. SDK MESSAGE GROUPINGS... 130
44. COMMON ELEMENTS ... 132
44.1. ENUMERATIONS ... 132
44.2. STRUCTURES .. 134
45. ACCESSORIES AND CUSTOM OBJECTS ... 136
45.1. ENUMERATIONS ... 136
45.2. EVENTS .. 140
45.3. CREATE FIXED CUSTOM OBJECT .. 143
45.4. DEFINE CUSTOM OBJECT .. 144
45.5. DELETE CUSTOM OBJECTS ... 147
46. ACTIONS AND BEHAVIOUR .. 148
46.1. ENUMERATIONS ... 148
46.2. EVENTS .. 149
46.3. STRUCTURES .. 150
46.4. BEHAVIOR CONTROL AND ASSUME BEHAVIOR CONTROL .. 153
46.5. CANCEL ACTION BY ID TAG ... 155
46.6. CANCEL BEHAVIOR .. 155
46.7. LOOK AROUND IN PLACE .. 156
47. ALEXA .. 157

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 viii

47.1. ENUMERATIONS ... 157
47.2. EVENTS .. 157
47.3. ALEXA AUTHORIZATION STATE ... 158
47.4. ALEXA OPT IN .. 158
48. ANIMATION ... 159
48.1. STRUCTURES .. 159
48.2. LIST ANIMATIONS ... 159
48.3. LIST ANIMATION TRIGGERS ... 160
48.4. PLAY ANIMATION ... 160
48.5. PLAY ANIMATION TRIGGER ... 161
49. ATTENTION TRANSFER.. 162
49.1. EVENTS .. 162
49.2. GET LATEST ATTENTION TRANSFER .. 163
50. AUDIO ... 164
50.1. ENUMERATIONS ... 164
50.2. EVENTS .. 165
50.3. APP INTENT ... 167
50.4. AUDIO FEED (FROM THE MICROPHONES) .. 168
50.5. AUDIO PROCESSING MODE ... 169
50.6. EXTERNAL AUDIO STREAM PLAYBACK .. 170
50.7. MASTER VOLUME ... 172
50.8. SAY TEXT .. 173
51. BATTERY ... 174
51.1. ENUMERATIONS ... 174
51.2. BATTERY STATE .. 174
52. CONNECTION ... 175
52.1. EVENTS .. 175
52.2. EVENT STREAM .. 177
52.3. PROTOCOL VERSION .. 178
52.4. SDK INITIALIZATION .. 179
52.5. USER AUTHENTICATION .. 180
52.6. VERSION STATE .. 181
53. CUBE ... 182
53.1. ENUMERATIONS ... 182
53.2. EVENTS .. 183
53.3. CONNECT CUBE .. 184
53.4. CUBES AVAILABLE ... 184
53.5. DISCONNECT CUBE .. 185
53.6. DOCK WITH CUBE ... 186
53.7. FLASH CUBE LIGHTS ... 187
53.8. FORGET PREFERRED CUBE ... 187
53.9. PICKUP OBJECT .. 188
53.10. PLACE OBJECT ON GROUND HERE ... 189
53.11. POP A WHEELIE.. 190
53.12. ROLL BLOCK .. 191
53.13. ROLL OBJECT ... 192
53.14. SET CUBE LIGHTS .. 193
53.15. SET PREFERRED CUBE ... 194

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 ix

54. DIAGNOSTICS ... 195
54.1. CHECK CLOUD CONNECTION .. 195
54.2. UPLOAD DEBUG LOGS .. 196
55. DISPLAY .. 197
55.1. EVENTS .. 197
55.2. DISPLAY IMAGE RGB ... 197
55.3. ENABLE MIRROR MODE ... 198
55.4. SET EYE COLOR ... 198
56. FACES .. 199
56.1. ENUMERATIONS ... 199
56.2. EVENTS .. 200
56.3. CANCEL FACE ENROLLMENT ... 202
56.4. ENABLE FACE DETECTION .. 203
56.5. ENROLL FACE ... 204
56.6. ERASE ALL ENROLLED FACES .. 204
56.7. ERASE ENROLLED FACE BY ID ... 205
56.8. FIND FACES ... 205
56.9. REQUEST ENROLLED NAMES .. 206
56.10. SET FACE TO ENROLL .. 207
56.11. UPDATE ENROLLED FACE BY ID ... 208
57. FEATURES & ENTITLEMENTS .. 209
57.1. ENUMERATIONS ... 209
57.2. GET FEATURE FLAG ... 210
57.3. GET FEATURE FLAG LIST .. 211
57.4. UPDATE USER ENTITLEMENTS .. 212
58. IMAGE PROCESSING ... 213
58.1. ENUMERATIONS ... 213
58.2. EVENTS .. 213
58.3. CAMERA FEED .. 215
58.4. CAPTURE SINGLE IMAGE ... 216
58.5. ENABLE IMAGE STREAMING ... 217
58.6. ENABLE MARKER DETECTION ... 218
58.7. ENABLE MOTION DETECTION ... 219
58.8. GET CAMERA CONFIG .. 220
58.9. IS IMAGE STREAMING ENABLED .. 220
58.10. SET CAMERA SETTINGS ... 221
59. INTERACTIONS WITH OBJECTS .. 222
59.1. STRUCTURES .. 222
59.2. DRIVE OFF CHARGER .. 223
59.3. DRIVE ON CHARGER ... 223
59.4. GO TO OBJECT ... 224
59.5. TURN TOWARDS FACE .. 225
60. JDOCS .. 226
60.1. ENUMERATIONS ... 226
60.2. STRUCTURES .. 226
60.3. EVENTS .. 227
60.4. PULL JDOCS ... 227
61. MAPPING ... 228

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 x

61.1. THE NAVIGATION MAP FEED... 228
62. MOTION CONTROL .. 230
62.1. DRIVE STRAIGHT ... 230
62.2. DRIVE WHEELS ... 231
62.3. GO TO POSE .. 232
62.4. MOVE HEAD .. 233
62.5. MOVE LIFT .. 233
62.6. SET HEAD ANGLE .. 234
62.7. SET LIFT HEIGHT ... 235
62.8. STOP ALL MOTORS .. 236
62.9. TURN IN PLACE... 237
63. MOTION SENSING AND ROBOT STATE .. 238
63.1. ENUMERATIONS ... 238
63.2. STRUCTURES .. 238
63.3. EVENTS .. 240
64. ON BOARDING ... 242
64.1. ENUMERATIONS ... 242
64.2. EVENTS .. 243
64.3. ONBOARDING COMPLETE REQUEST ... 244
64.4. ONBOARDING INPUT ... 244
64.5. ONBOARDING STATE ... 247
64.6. ONBOARDING WAKE UP REQUEST .. 247
64.7. ONBOARDING WAKE UP STARTED REQUEST .. 247
65. PHOTOS .. 248
65.1. STRUCTURES .. 248
65.2. EVENTS .. 248
65.3. DELETE PHOTO ... 249
65.4. PHOTO ... 249
65.5. PHOTOS INFO... 250
65.6. THUMBNAIL... 251
66. SETTINGS AND PREFERENCES.. 252
66.1. STRUCTURES .. 252
66.2. UPDATE SETTINGS ... 252
66.3. UPDATE ACCOUNT SETTINGS ... 253
67. SOFTWARE UPDATES ... 254
67.1. ENUMERATIONS ... 254
67.2. START UPDATE ENGINE .. 254
67.3. CHECK UPDATE STATUS .. 254
67.4. UPDATE AND RESTART ... 255
68. HISTORICAL ODDITIES ... 255

CHAPTER 16 ... 256

THE WEB VISUALIZATION PROTOCOL ... 256
69. COMMUNICATION OVERVIEW .. 256
69.1. CONSOLE VARIABLES ... 257
70. WEBSOCKET OVERVIEW ... 257
70.1. SETTING UP THE COMMUNICATION CHANNEL ... 259
70.2. RECEIVED EVENTS ... 260

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xi

70.3. POSTED EVENTS.. 275

CHAPTER 17 ... 278

THE CLOUD SERVICES ... 278
71. CONFIGURATION ... 278
72. JDOCS SERVER ... 279
72.1. JDOCS INTERACTION .. 279
72.2. DELETE DOCUMENT ... 280
72.3. ECHO TEST... 280
72.4. READ DOCUMENTS .. 281
72.5. READ DOCUMENT ITEM .. 281
72.6. WRITE DOCUMENT .. 282
72.7. OTHER AREAS .. 282
73. NATURAL LANGUAGE PROCESSING .. 283
73.2. PARAMETERS FOR THE CLOUD INTENTS .. 283
74. LOGS AND TRACE DATA ... 285
74.1. LOG UPLOADER .. 285
74.2. CRASH UPLOADER ... 286
74.3. DAS MANAGER.. 287
75. REFERENCES AND RESOURCES .. 287

PART IV ... 289

ADVANCED FUNCTIONS ... 289

CHAPTER 18 ... 291

AUDIO INPUT ... 291
76. AUDIO INPUT ... 291
76.1. THE MICROPHONES AND CONVERSION TO AUDIO SAMPLES ... 292
76.2. SPATIAL AUDIO PROCESSING .. 294
76.3. NOISE REDUCTION ... 295
76.4. DETECTING ACTIVITY .. 295
76.5. BEAT DETECTION .. 296
76.6. RECORDING TO A FILE ... 298
76.7. VOICE ACTIVITY DETECTOR AND WAKE WORD .. 298
76.8. CONNECTIONS WITH VIC-GATEWAY AND SDK ACCESS ... 300
77. CLOUD SPEECH RECOGNITION .. 301
77.1. INTENT PARAMETERS ... 302
77.2. INTENT MAPPING CONFIGURATION FILE .. 304
78. REFERENCES AND RESOURCES .. 305

CHAPTER 19 ... 307

IMAGE PROCESSING ... 307
79. CAMERA OPERATION ... 307
79.1. CAMERA OPERATION ... 308
79.2. CAMERA CALIBRATION ... 308
79.3. CORRECTION .. 309
79.4. VISION MODES .. 310

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xii

79.5. ILLUMINATION LEVEL SENSING .. 311
79.6. VISUAL MOTION DETECTION ... 311
80. THE CAMERA POSE: WHAT DIRECTION IS CAMERA POINTING IN? 312
81. MARKERS ... 313
81.1. THE INITIAL PREPARATION STEPS ... 314
81.2. DETECT AND ANALYZE SQUARES ... 314
81.3. DECODING THE SQUARES .. 315
81.4. REVAMPING SIZE AND ORIENTATION .. 315
81.5. INFERRING KNOWLEDGE ABOUT OBJECTS .. 315
82. FACE AND FACIAL FEATURES RECOGNITION .. 316
82.1. FACE DETECTION ... 316
82.2. FACE IDENTIFICATION AND TRAINING ... 317
82.3. COMMUNICATION INTERFACE .. 317
83. TENSORFLOW LITE, DETECTING HANDS, PETS… AND THINGS?... 318
83.1. DETAILS ON TENSORFLOW LITE .. 318
83.2. OTHER IDEAS THAT WEREN’T FULLY REALIZED AND FUTURE POTENTIAL 320
84. PHOTOS/PICTURES .. 321
84.1. COMMUNICATION INTERFACE .. 321
85. CONFIGURATION FILES .. 322
85.1. VISION CONFIG .. 322
85.2. SCHEDULE MEDIATOR CONFIGURATION FILES ... 328
85.3. PHOTOGRAPHY CONFIGURATION FILES ... 328
86. RESOURCES & RESOURCES .. 329

CHAPTER 20 ... 331

MAPPING & NAVIGATION .. 331
87. MAPPING OVERVIEW ... 331
88. MAP REPRESENTATION .. 331
88.1. QUAD-TREE MAP REPRESENTATION BASICS ... 332
88.2. THE MAP’S STARTING POINT .. 332
88.3. HOW THE MAP IS SENT FROM VECTOR TO SDK APPLICATIONS .. 333
89. MEASURING THE DISTANCE TO OBJECTS .. 333
89.1. FILTERING ... 333
89.2. INTERNAL DATA STRUCTURES ... 335
90. BUILDING THE MAP ... 337
90.1. MAPPING CLIFFS AND EDGES .. 337
90.2. TRACKING OBJECTS .. 338
90.3. BUILDING A MAP WITH SLAM.. 338
91. NAVIGATION AND PLANNING ... 339
92. RESOURCES & RESOURCES .. 339

CHAPTER 21 ... 340

ACCESSORIES ... 340
93. ACCESSORIES IN GENERAL ... 340
93.1. DOCKING .. 340
94. HOME & CHARGING STATION .. 340
94.1. DOCKING .. 340
95. COMPANION CUBE .. 341

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xiii

95.1. COMMUNICATION ... 341
95.2. ACCELEROMETER .. 342
95.3. DOCKING .. 342
96. CUSTOM ITEMS .. 342
96.1. A FIXED, UNMARKED OBJECT (CUBE-SHAPED) ... 343
96.2. CUSTOM WALL DEFINITION ... 343
96.3. CUSTOM CUBE DEFINITION ... 344
96.4. CUSTOM BOX DEFINITION ... 345
96.5. COMMUNICATION ... 345

PART V .. 347

ANIMATION ... 347

CHAPTER 22 ... 349

ANIMATION ... 349
97. ANIMATION TRIGGERS AND ANIMATION GROUPS ... 349
97.1. FILES .. 350
97.2. NAMING CONVENTIONS .. 351
97.3. TRIGGER MAP CONFIGURATION FILES .. 351
97.4. ANIMATION GROUP FILES ... 352
98. ANIMATIONS ... 352
98.1. ANIMATION TRACKS .. 352
98.2. ANIMATION FILES .. 353
98.3. ANIMATION NAMES MANIFEST ... 353
99. SDK COMMANDS TO PLAY ANIMATIONS ... 353

CHAPTER 23 ... 355

LIGHTS ANIMATION ... 355
100. LIGHTS ANIMATION OVERVIEW .. 355
101. CUBE SPINNER GAME .. 355
102. BACKPACK LIGHTS ANIMATION ... 357
102.1. TRIGGER MAP CONFIGURATION FILES .. 357
102.2. THE BACKPACK LIGHTS PATTERN .. 357
103. CUBE LIGHTS ANIMATION ... 358
103.1. TRIGGER MAP CONFIGURATION FILES .. 358
103.2. CUBE ANIMATIONS ... 358

CHAPTER 24 ... 360

VIDEO DISPLAY & FACE .. 360
104. OVERVIEW OF THE DISPLAY .. 360
104.1. ORIGIN ... 360
104.2. RENDERING SYSTEM .. 361
105. IMAGE LAYOUT, COMPOSITION, AND SPRITE SEQUENCES ... 362
105.1. BOOT ANIMATION .. 362
105.2. MAPPING ANIMATION TRIGGER NAMES TO LAYOUTS ... 362
105.3. LAYOUT FILE .. 363
105.4. IMAGE MAP FILE ... 364

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xiv

105.5. INDEPENDENT SPRITES ... 364
105.6. SPRITE SEQUENCES .. 365
105.7. DISPLAYING TEXT ON THE SCREEN ... 365
106. PROCEDURAL FACE .. 366
106.1. THE RENDERING OF INDIVIDUAL EYES ... 367
106.2. THE PROCESS OF DRAWING THE PROCEDURAL FACE ... 368
107. COMMANDS .. 368
108. REFERENCES AND RESOURCES .. 369

CHAPTER 25 ... 370

AUDIO PRODUCTION ... 370
109. SPEAKER ... 370
110. SOUND EFFECTS FROM AUDIO FILES AND PROCEDURES.. 371
110.1. SOUND PLUGINS ... 372
110.2. AUDIO PIPELINE ... 373
110.3. HOW VECTOR USES WWISE ... 374
110.4. EQUALIZER .. 376
110.5. THE CONFIGURATION ... 377
110.6. THE SOUND FILES .. 377
110.7. MAPPING AUDIO EVENT AND SOUND NAMES TO ID NUMBERS ... 379
111. TEXT TO SPEECH .. 380
111.1. THAT DISTINCT ROBOTIC VOICE QUALITY .. 380
111.2. THE CONFIGURATION AND LOCALIZATION FILES .. 382
111.3. CUSTOMIZATION ... 384
112. COMMANDS .. 384
113. REFERENCES AND RESOURCES .. 384

CHAPTER 26 ... 386

MOTION CONTROL .. 386
114. MOTION CONTROL .. 386
114.1. PATHS .. 386
114.2. FEEDBACK ... 387
114.3. MOTOR CONTROL ... 387
114.4. BURN OUT PROTECTION .. 388
114.5. NO PINCHING FINGERS! .. 388
114.6. GETTING THE LIFT AND HEAD POSITIONS JUST RIGHT .. 388
114.7. DIFFERENTIAL DRIVE KINEMATICS.. 389
115. MOTION CONTROL COMMANDS ... 390

CHAPTER 27 ... 391

ANIMATION FILE FORMAT .. 391
116. ANIMATION BINARY FILE FORMAT ... 391
116.1. OVERVIEW OF THE FILE FORMAT ... 391
116.2. RELATIONSHIP WITH COZMO ... 391
117. STRUCTURES .. 392
117.1. ANIMCLIPS .. 392
117.2. ANIMCLIP ... 392
117.3. AUDIOEVENTGROUP ... 392

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xv

117.4. AUDIOPARAMETER ... 393
117.5. AUDIOSTATE ... 393
117.6. AUDIOSWITCH ... 393
117.7. BACKPACKLIGHTS .. 394
117.8. BODYMOTION ... 394
117.9. EVENT .. 395
117.10. FACEANIMATION .. 395
117.11. HEADANGLE .. 396
117.12. LIFTHEIGHT ... 396
117.13. KEYFRAMES ... 397
117.14. PROCEDURALFACE .. 398
117.15. RECORDHEADING ... 399
117.16. ROBOTAUDIO .. 399
117.17. SPRITEBOX .. 400
117.18. TURNTORECORDEDHEADING ... 401

PART VI ... 403

HIGH LEVEL AI .. 403

CHAPTER 28 ... 405

BEHAVIOR ... 405
118. OVERVIEW .. 405
119. ACTIONS AND BEHAVIORS ... 405
119.1. ACTIONS AND THE ACTION QUEUES ... 405
119.2. BEHAVIORS ... 405
119.3. PATH PLANNING AND OTHER SMART THINGS TO SUPPORT US .. 407
119.4. DECIDING ON THE BEHAVIOR TO USE ... 407
119.5. INITIATING THE BEHAVIOR ... 407
119.6. MANAGING THE ACTIVE AND PAUSED BEHAVIORS .. 408
119.7. BEHAVIOR CONTROLLERS .. 409
119.8. AUDIO EVENTS ... 409

CHAPTER 29 ... 410

EMOTION MODEL .. 410
120. OVERVIEW .. 410
121. EMOTIONS, AND STIMULATION .. 410
121.1. STIMULATION .. 410
121.2. THE EMOTION MODEL .. 411
121.3. SIMPLE MOODS .. 411
121.4. INTERACTION WITH THE BEHAVIOR ENGINE .. 412
121.5. MOOD MANAGER CONFIGURATION .. 412
121.6. MOOD CONFIGURATION ... 413
122. REFERENCES & RESOURCES ... 414

CHAPTER 30 ... 415

BEHAVIOR TREE ... 415
123. OVERVIEW .. 415

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xvi

124. BEHAVIOR TREE .. 415
124.1. TIMERS ... 416
124.2. CONFIGURATION ... 417
124.3. BEHAVIOR NODE ... 417
124.4. CONDITION NODES .. 418
125. A LOOK AT SOME INTERESTING BEHAVIORS .. 422
125.1. SHOVING STUFF OFF OF THE TABLE... 422
125.2. POUNCING .. 422
125.3. REACTING TO SOUND ... 423
125.4. DANCING .. 424
126. USER CONDITIONS .. 427
127. REFERENCES & RESOURCES ... 428

PART VII .. 429

MAINTENANCE .. 429

CHAPTER 31 ... 431

SETTINGS, PREFERENCES, FEATURES, AND STATISTICS .. 431
128. THE ARCHITECTURE .. 431
128.1. STORAGE LOCATION .. 431
129. WIFI CONFIGURATION .. 432
130. THE OWNER ACCOUNT INFORMATION ... 432
131. PREFERENCES & ROBOT SETTINGS ... 433
131.1. ENUMERATIONS ... 433
131.2. ROBOTSETTINGSCONFIG ... 435
132. OWNER ENTITLEMENTS .. 436
133. VESTIGAL COZMO SETTINGS .. 436
134. FEATURE FLAGS .. 437
134.1. CONFIGURATION FILE ... 437
134.2. COMMUNICATION INTERFACE TO THE FEATURES ... 437
135. ROBOT LIFETIME STATISTICS & EVENTS .. 438
136. REFERENCES & RESOURCES ... 439

CHAPTER 32 ... 440

THE SOFTWARE UPDATE PROCESS .. 440
137. THE ARCHITECTURE ... 440
137.1. BODY-BOARD .. 440
137.2. THE COMPANION CUBE FIRMWARE ... 441
138. THE UPDATE FILE ... 441
138.1. MANIFEST.INI ... 441
138.2. HOW TO DECRYPT THE OTA UPDATE ARCHIVE FILES ... 443
139. THE UPDATE PROCESS .. 443
139.1. STATUS DIRECTORY .. 444
139.2. PROCESS ... 444
139.3. UPDATER CONFIGURATION .. 446
139.4. MAINTENANCE REBOOT .. 447
140. RESOURCES & RESOURCES .. 448

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xvii

CHAPTER 33 ... 449

DIAGNOSTICS .. 449
141. OVERVIEW .. 449
141.1. THE SOFTWARE INVOLVED ... 449
142. SPECIAL SCREENS AND MODES ... 451
142.1. CUSTOMER CARE INFORMATION SCREEN ... 451
142.2. VECTORS’ DEBUG SCREEN (TO GET INFO FOR USE WITH THE SDK) 451
142.3. DISPLAYING FAULT CODES FOR ABNORMAL SYSTEM SERVICE EXIT / HANG 451
142.4. RECOVERY MODE ... 451
142.5. “FACTORY RESET” ... 452
143. BACKPACK LIGHTS ... 452
144. DIAGNOSTIC COMMANDS .. 452
145. LOGS ... 452
145.1. GATHERING LOGS, ON DEMAND .. 453
145.2. VIC-LOGMGR-UPLOAD .. 453
145.3. GATHERING LOGS, REGULARLY ... 454
145.4. OPTING INTO (AND OUT OF) UPLOADING LOGS AND DAS EVENTS 454
145.5. KERNEL ACTIVITY TRACING (LTTNG) .. 455
145.6. FAULT CODE HANDLER ... 455
145.7. CRASH LOGS .. 457
146. CONSOLE FILTER ... 458
147. USAGE STUDIES AND PROFILING DATA .. 460
147.1. EVENT TRACING .. 460
147.2. DAS .. 461
147.3. PROFIILING AND LIBOSSTATE.. 462
147.4. EXPERIMENTS .. 464
148. REFERENCES & RESOURCES ... 465

REFERENCES & RESOURCES .. 467
149. CREDITS .. 467
150. REFERENCE DOCUMENTATION AND RESOURCES .. 467
150.1. ANKI .. 467
150.2. OTHER ... 468
150.3. QUALCOMM .. 468

APPENDICES .. 469

APPENDIX A ... 471

ABBREVIATIONS, ACRONYMS, GLOSSARY ... 471

APPENDIX B ... 477

TOOL CHAIN .. 477
151. REFERENCES & RESOURCES ... 479

APPENDIX C ... 480

ALEXA MODULES ... 480

APPENDIX D ... 482

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 xviii

FAULT AND STATUS CODES .. 482
152. REFERENCES AND RESOURCES .. 488

APPENDIX E ... 489

BODY BOARD CONNECTORS, PIN MAP.. 489
153. BODY-BOARD CONNECTORS .. 489
154. MICROCONTROLLER PIN MAPS AND RESOURCES .. 491

APPENDIX F ... 495

FILE SYSTEM .. 495

APPENDIX G ... 499

BLUETOOTH LE SERVICES & CHARACTERISTICS .. 499
155. CUBE SERVICES ... 499
155.1. CUBE’S SERVICES .. 500
156. VECTOR SERVICES ... 500
156.1. VECTOR’S SERIAL SERVICE ... 500

APPENDIX H ... 501

SERVERS & DATA SCHEMA ... 501

APPENDIX I .. 503

FEATURES .. 503

APPENDIX J .. 507

PHRASES AND THEIR INTENT .. 507

APPENDIX K ... 512

EMOTION EVENTS .. 512

APPENDIX L ... 514

DAS TRACKED EVENTS AND STATISTICS .. 514
157. DAS TRACKED EVENTS AND STATISTICS .. 514
157.1. BASIC INFORMATION ... 514
157.2. POWER MANAGEMENT EVENTS AND STATISTICS .. 515
157.3. SENSOR STATISTICS AND EVENTS .. 517
157.4. MOTOR STATISTICS AND EVENTS .. 518
157.5. COMMUNICATION RELATED EVENTS POSTED TO DAS ... 518
157.6. SETTINGS AND PREFERENCES EVENTS ... 520
157.7. UPDATE-RELATED EVENTS POSTED TO DAS ... 521
157.8. VISION & NAVIGATION RELATED EVENTS POSTED TO DAS ... 521
157.9. BEHAVIOUR, FEATURE, MOOD, AND ENGINE RELATED EVENTS POSTED TO DAS 523

APPENDIX M .. 524

PLEO .. 524
157.10. SALES ... 525
157.11. RESOURCES ... 525

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 1

Preface

The Anki Vector is a charming little robot – cute, playful, with a slightly mischievous character. It

is everything I ever wanted to create in a bot. Sadly, Anki went defunct shortly after its release.

Almost a year later Anki’s software and designs were purchased by Digital Dream Labs, who are

presently developing plans for future support and development.

This book is my attempt to understand the Anki Vector and its construction; it is not authoratative

and is based on speculation. Speculation informed by Anki’s SDKs, blog posts, patents and FCC

filings; by articles about Anki, presentations by Anki employees; by PCB photos, and hardware

teardowns from others; by a team of people (Project Victor) analyzing the released software; and

by experience with the parts, and the functional areas. When you do find errors (and typos), please

contact me (my email is on the second page.)

1. ORGANIZATION OF THIS DOCUMENT
 PREFACE. This introduction describes the organization of the chapters and appendices.

 CHAPTER 1: OVERVIEW OF VECTOR’S ARCHITECTURE. Introduces the overall design of the

Anki Vector robot.

PART I: ELECTRICAL DESIGN. This part provides an overview of the design of the electronics in

Vector and his accessories:

 CHAPTER 2: VECTOR’S ELECTRONICS DESIGN. An overview of the Vector’s electronics design.

 CHAPTER 3: HEAD-BOARD ELECTRONICS DESIGN. A detailed look at the electronics design of

Vector’s main processing board.

 CHAPTER 4: BACKPACK & BODY-BOARD ELECTRONICS DESIGN. A detailed look at the

electronics design of Vector’s backpack and motor driver boards.

 CHAPTER 5: ACCESSORY ELECTRONICS DESIGN. A look at the electronics design of Vector’s

accessories.

PART II: BASIC OPERATION. This part provides an overview of Vector’s software design.

 CHAPTER 6: ARCHITECTURE. A detailed look at Vector’s overall software architecture.

 CHAPTER 7: STARTUP. A detailed look at Vector’s startup, and shutdown processes

 CHAPTER 8: POWER MANAGEMENT. A detailed look at Vector’s architecture for battery

monitoring, changing and other power management.

 CHAPTER 9: BUTTON & TOUCH INPUT AND OUTPUT LEDS. A look at the push button, touch

sensing, surface proximity sensors, time of flight proximity sensing, and backpack LEDs.

 CHAPTER 10: INERTIAL MOTION SENSING

PART III: COMMUNICATION. This part provides details of Vector’s communication protocols. These

chapters describe structure communication, the information that is exchange, its encoding, and the

sequences needed to accomplish tasks. Other chapters will delve into the functional design that the

communication provides interface to.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 2

 CHAPTER 11: COMMUNICATION. A look at Vector’s communication stack.

 CHAPTER 12: COMMUNICATION WITH THE BODY-BOARD. The protocol that the body-board

responds to.

 CHAPTER 13: VECTOR’S BLUETOOTH LE COMMUNICATION PROTOCOL. The Bluetooth LE

protocol that Vector responds to.

 CHAPTER 14: CUBE’S BLUETOOTH LE COMMUNICATION PROTOCOL. The Bluetooth LE

protocol that the cube responds to.

 CHAPTER 15: SDK PROTOCOL. The HTTPS protocol that Vector responds to.

 CHAPTER 16: WEB-VISUALIZATION PROTOCOL. The web-sockets protocol(s) that Vector

provides for debugging in development builds.

 CHAPTER 17: CLOUD. A look at how Vector syncs with remote services.

PART IV: ADVANCED FUNCTIONS. This part describes items that are Vector’s primary function.

 CHAPTER 18: AUDIO INPUT. A look at Vector’s ability to hear spoken commands, and ambient

sounds.

 CHAPTER 19: IMAGE PROCESSING. Vector vision system is sophisticated, with the ability to

recognize marker, faces, and objects; to take photographs, and acts as a key part of the

navigation system.

 CHAPTER 20: MAPPING & NAVIGATION. A look at Vector’s mapping and navigation systems.

 CHAPTER 21: ACCESSORIES. A look at Vector’s home (charging station), companion cube and

custom objects.

PART V: ANIMATION. Vector uses animations – “sequence[s] of highly coordinated movements,

faces, lights, and sounds” – “to demonstrate an emotion or reaction.” This part describes how the

animation system works.

 CHAPTER 22: ANIMATION. An overview how Vector’s scripted animations represents the

“movements, faces, lights and sounds;” and how they are coordinated.

 CHAPTER 23: LIGHT ANIMATION. An overview of the backpack and cube light animation.

 CHAPTER 24: DISPLAY & PROCEDURAL FACE. Vector displays a face to convey his mood and

helps forms an emotional connection with his human.

 CHAPTER 25: AUDIO PRODUCTION. A look at Vector’s sound effects and how he speaks

 CHAPTER 26: MOTION CONTROL. At look at how Vector’s moves.

 CHAPTER 27: ANIMATION FILE FORMAT. The format of Vector’s binary animation file

PART VI: HIGH-LEVEL AI.

 CHAPTER 28: BEHAVIOR. A look at Vectors behaviors, and emotions.

 CHAPTER 29: EMOTION/MOOD MODEL. At Vector’s emotions, where they come from and how

they impact the sounds and choices he makes.

 CHAPTER 30: BEHAVIOR TREES. A look at how the behaviors are selected and their settings.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 3

PART VII: MAINTENANCE. This part describes items that are not Vector’s primary function; they

are practical items to support Vector’s operation.

 CHAPTER 31: SETTINGS, PREFERENCES, FEATURES AND STATISTICS. A look at how Vector

syncs with remote servers

 CHAPTER 32: SOFTWARE UPDATES. How Vector’s software updates are applied.

 CHAPTER 33: DIAGNOSTICS. The diagnostic support built into Vector, including logging and

usage statistics.

REFERENCES AND RESOURCES. This provides further reading and referenced documents.

APPENDICES: The appendices provide extra material supplemental to the main narrative. These

include tables of information, numbers and keys.

 APPENDIX A: ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of

terms, abbreviations, and acronyms.

 APPENDIX B: TOOL CHAIN. This appendix lists the tools known or suspected to have been

used by Anki to create, and customize the Vector, and for the servers. Tools that can be used

to analyze Vector

 APPENDIX C: ALEXA MODULES. This appendix describes the modules used by the Alexa client

 APPENDIX D: FAULT AND STATUS CODES. This appendix provides describes the system fault

codes, and update status codes.

 APPENDIX E: BODY-BOARD CONNECTOR AND PIN MAP. This appendix lists the electrical

connections on the body-board.

 APPENDIX F: FILE SYSTEM. This appendix lists the key files that are baked into the system.

 APPENDIX G: BLUETOOTH LE SERVICES & CHARACTERISTICS. This appendix provides

information on the Bluetooth LE interface GUIDs to the companion Cube, and to Anki

Vector.

 APPENDIX H: SERVERS. This appendix provides the servers that the Anki Vector and App

contacts.

 APPENDIX I: FEATURES. This appendix enumerates the Vector OS “features” that can be

enabled and disabled; and the AI behavior’s called “features.”

 APPENDIX J: PHRASES. This appendix reproduces the phrases that Vector keys off of.

 APPENDIX K: EMOTION EVENTS. This appendix provides a list of the emotion events that

Vector internally responds to.

 APPENDIX L: DAS EVENTS. This appendix describes the identified DAS events

 APPENDIX M: PLEO. This appendix gives a brief overview of the Pleo animatronic dinosaur,

an antecedent with many similarities.

Note: I use many diagrams from Cozmo literature. They’re close enough

1.1. ORDER OF DEVELOPMENT

A word on the order of development; the chapters are grouped in sections of related levels of

functionality and (usually) abstraction.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 4

Most chapters will description a vertical slice or stack of the software. The higher levels will

discuss features and interactions with other subsystems that have not been discussed in detail yet.

For instance, the section on the basic operation of Vectors hardware includes layers that link to the

behavior and communication well ahead of those portions. Just assume that you’ll have to flip

forward and backward from time to time.

The communication interface has its own section with the relevant interactions, commands,

structures and so on.

1.2. VERSION(S)
The software analyzed here is mostly version 1.5 and 1.6 of Vector’s production software, as well

as some of the development version of 1.7. There are incremental differences with each version; I

have not always described the places that only apply to a specific version.

 Version 1.6 was the last release to customers as Anki ceased operation. This release

includes more software elements that are unused, but are nonetheless telling.

 Version 1.7 was completed and released by Digital Dreams Labs.

1.3. CUSTOMIZATION AND PATCHING

What can be customized – or patched – in Vector?

 The software in the main processor may be customizable; that will be discussed in many

areas of the rest of the document

 The body-board firmware is field updatable, and will take expertise to construct updates.

 The cube firmware can be updated, but that appears to be the hardest to change, and not

likely to be useful.

1.4. CODE NAMES OR VECTOR VS VICTOR
Vector’s working name during development – aka code name – was Victor. Early products used

ad hoc code names. After the development of Cozmo, Anki used NATO phonetic alphabet code

words for their products:

Product Code Word Description

 Bingo A larger, two-wheeled self-balancing robot that was more dog-

like in inspiration. It would have a larger battery, depth-

sensing camera (instead of time of flight sensing), could

traverse floors, etc. The software was based on Vector’s.

The large version (called Big Bingo) was requested by the

investors for use in security related applications. The smaller,

home unit is referred to as Mini Bingo, and initial prototypes

were ~15 cm tall.

Note: Bravo is the correct NATO alphabet codeword, so that

rule of thumb isn’t 100%

Cozmo Cozmo Cozmo a predecessor to Vector. Named after the pet

Pomeranian dog (Cosmo) of Patrick DeNeale, an early

employee.

Fast and

Furious
Foxtrot Part of the Anki Drive car racing products.

Overdrive Overdrive Part of the Anki Drive car racing products.

Drive Rush Hour Part of the Anki Drive car racing products.

Table 1: Anki code

names

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 5

Vector Victor The name Vector was selected both for its similarity to Victor,

its uniqueness (e.g., not already trademarked), and working

well as a trigger word across many accents and locales.

 Whiskey This was intended to be a lower cost Cozmo, with less

memory, less expensive plastics, only a single cube.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 6

CHAPTER 1

Overview of Vector

Anki Vector is a cute, palm-sized robot; a buddy with a playful, slightly mischievous character.

This chapter provides an overview of Vector:

 Overview of Vector and his features

 Privacy and Security

 Ancestry: Cozmo

 Alexa Built-in

2. OVERVIEW

Vector is an emotionally expressive, life-like, animatronic robot pet that people connect with and

feel affection for.

A touch sensor, button,

segmented light indicator,

and microphones

Tiltable head, a display

for facial expression,

and camera

Sensors to detect cliff, and

charging pads

Time of flight sensor to

sense environment

Locomotion: Two

motors on tracks

Lift arms to pick up

cube, and wave

Speaker for sounds and

speech

2.1. COMPELLING CHARACTER

Anki’s hallmark is that creating compelling, life-like robot characters, with film-style animations.

What does that mean?

 A character has identifiable traits, and moods, something that we can empathize with.

 A compelling character tries but doesn’t always succeed. As Pixar said, “we admire a

character trying more than for their successes”

 He can sense the environment and has some awareness of what they and others are doing…

 He knows that he succeeded – or didn’t – and that affects his mood.. So a character has

moods, emotions and that affects what it does and how it does it.

Figure 1: Vector’s

main features

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 7

 A living thing is never entirely at rest or silent; even when sleeping it moves a little and

makes little sounds

 Movements vary and are never quite the same. When they look repetitive, they break the

illusion. This is true for choices, reactions and other behaviors too.

 There are little motions, sounds and body’s affect that anticipate what a character is

thinking and going to do

Vector has a wide variety of behaviors, little motions (animations), and even some emotions that

give him a personality. He can express emotions thru expressive eyes (on an LCD display), raising

and lower his head, sounds, wiggling his body (by using his treads), or lifting his arms… or

shaking them. He can sense surrounding environment, interact and respond to it. He can

recognize his name1, follow the gaze of a person looking at him, and seek petting.2

2.2. FEATURES

Although cute, small, and affordable,3 Vector’s design is structured like many other robots.

He has a set of operator inputs:

 A touch sensor is used detect petting

 Internal microphone(s) to listen, hear commands and sense the ambient activity level

 A button that is used to turn Vector on, to cause him to listen – or to be quiet (and not

listen), to reset him (wiping out his robot-specific information).

 He can detect his arms and head being raised or lowered.

He has a set of indicators/annunciators:

 Segmented lights on Vector’s backpack are used to indicate when he is on, needs the

charger, has heard the wake word, is talking to the Cloud, can’t detect WiFi, is booting, is

resetting (wiping out his personality and robot-specific information).

 An LCD display, primarily to show eyes of a face. Robot eyes were Anki’s strongest piece

of imagery. Vector smiles and shows a range of expressions with his eyes.

 Speaker for cute sounds and speech synthesis

He has other means to express affect as well:

 His head can be tilted up and down to represent sadness, happiness, etc.

 His arms flail to represent frustration

 He can use his treads to shake or wiggle, usually to express happiness or embarrassment

He has environmental sensors:

 A camera is used to map the area, detect and identify objects and faces.

 Fist-bump and being lifted can be detected using an internal inertial measurement unit

(IMU)

 A forward facing “time of flight” proximity sensor aids in mapping and object avoidance

1 Vector can’t be individually named.
2 Admittedly this is a bit hit and miss.
3 Although priced as an expensive toy, this feature set in a robot is usually an order of magnitude more expensive, with less quality.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 8

 Ground sensing proximity sensors that are used to detect cliffs at the edge of his area and

to following lines when he is reversing onto his charger.

His internal sensing includes:

 Battery voltage, charging; charging temperature

 IMU for orientation and position (6-axis) tracking

 Encoders provide feedback on motor rotation

His other articulation & actuators are:

 Vector drives using two independent treads to do skid-steering

 Using his arms Vector can lift or flip a cube; he can pop a wheelie, or lift himself over a

small obstacle.

 Vector can raise and lower his head

Communication (other than user facing):

 Communication with the external world is thru WiFi and Bluetooth LE.

 Internally RS-232 (CMOS levels) and USB

Motion control

 At the lowest level can control each of the motors speed, degree of rotation, etc. This

allows Vector to make quick actions.

 Combined with the internal sensing, he can drive in a straight line and turn very tightly.

 Driving is done using a skid-steering, kinematic model

 To do all this, the motion control takes in feedback from the motor encoder, IMU-

gyroscope. May also use the image processing for SLAM-based orientation and

movement.

Guidance, path planning

 Vector plans a route to his goals – if he knows where his goal is – along a path free of

obstacles; he adapts, moving around in changing conditions.

 A*, Rapidly-Expanding Random Tree (RRT), D*-lite

 Paths are represented as arcs, line segments, and turn points

Mapping and Navigation:

 Maps are built using simultaneous location and mapping (SLAM) algorithms, using the

camera and IMU gyroscope movement tracking, time of flight sensor to measure distances,

and particle system algorithms to fill in the gaps.

 The maps are represented uses quad-tree (position, pose)

Behaviour system:

 Variety of behaviors animations

 Goals, linking up to the guidance system to accomplish them

 A simple emotion model to drive selection of behaviours

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 9

Emotion model. Dimensions to emotional state:

 Happy (also referred to as his default state)

 Confident

 Social

 Stimulated

Vision. This is one of Anki’s hallmarks: they used vision where others used beacons. For instance,

iRobot has a set of IR beacons to keep the robots of out areas, and to guide it to the dock. Mint has

an IR beacon that the mint robots use to navigate and drive in straight lines. Although Vector’s

companion cube is powered, this is not used for localization. It has markers that are visually

recognized by Vector.

 Illumination sensing

 Motion sensing

 Links to Navigation system for mapping, (SLAM etc)

 Recognizing marker symbols in his environment

 Detecting faces and gaze detection allows him to maintain eye contact

3. PRIVACY AND SECURITY

Vector’s design includes a well thought out system to protect privacy. This approach protects the

following from strangers gaining access to:

 Photos taken by Vector

 The image stream from the camera

 The audio stream from the microphone — if it had been finished being implemented

 Information about the owner

 Control of the robot’s movement, speech & sound, display, etc.

Vector’s software is protected from being altered in a way that would impair its ability to secure

the above.

4. COZMO

We shouldn't discuss Vector without mentioning the prior generation. Vector’s body is based

heavily on Cozmo; the mechanical refinements and differences are relatively small. Vector’s

software architecture also borrows from Cozmo and extends it greatly. Many of Vector’s

behaviours, senses, and functions were first implemented in Cozmo (and/or in the smartphone

application). One notable difference is that Cozmo did not include a microphone.

Cozmo includes a wide variety of games, behaviours, and ~940 animation scripts. Cozmo’s engine

is reported to be “about 1.8 million lines of code, the AI, computer vision, path planning,

everything.”4 This number should be discounted somewhat, as it likely includes many large 3rd

party modules… Nonetheless, it represents the scale of work to migrate Cozmo’s code base for

reuse in Vector.

4 https://www.reddit.com/r/IAmA/comments/7c2b5k/were_the_founders_of_anki_a_robotics_and_ai/

https://www.reddit.com/r/IAmA/comments/7c2b5k/were_the_founders_of_anki_a_robotics_and_ai/

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 10

Not all of Cozmo’s functionality was ported to Vector at one time. Instead, key features and

behaviours were incrementally brought to Vector in its regular software updates. It is likely the

intent was to follow-up with much more in future updates, piling on features until September and

then switch to a focus on bug fixes and stability for the upcoming Christmas sales. This was,

perhaps, a faster schedule than they were able to deliver.

5. ALEXA INTEGRATION

Vector includes Amazon Alexa functionality, but it is not intimately integrated. Vector only acts

like an Echo Dot, as pass thru for Alexa service. By using the key word “Alexa,” Vector will

suppress his activity, face and speech, and the Alexa functionality takes over. Vector has no

awareness of Alexa’s to-do list, reminders, messages, alarms, notifications, question-and-answers,

and vice-versa; nor can he react to them.

The most likely reason for including Alexa is the times: everything had to include Alexa to be hip,

or there would be great outcry. Including Alexa may have also been intended to provide

functionality and features that Anki couldn’t, to gain experience with the features that Amazon

provides, and (possibly) with the intent to more tightly integrate those features into Anki products

while differentiating themselves in other areas.

Alexa clearly took a lot of effort to integrate, and a lot of resources:

“[Alexa Voice Service] solutions for Alexa Built-in products required expensive

application processor-based devices with >50MB memory running on Linux or Android”5

Alexa’s software resources consume as much space as Vector’s main software. And the software

is not power efficient. Even casual use of Alexa noticeably reduces battery life, and (anecdotally)

increases the processor temperature.

See Appendix C for a list for a list of the Alexa modules.

5 https://aws.amazon.com/blogs/iot/introducing-alexa-voice-service-integration-for-aws-iot-core/

Alexa’s SDK and services have continued to evolve. New Alexa SDKs allow simpler processors and smaller code by acting as little
more than a remote microphone.

https://aws.amazon.com/blogs/iot/introducing-alexa-voice-service-integration-for-aws-iot-core/

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 11

PART I

Electronics Design

This part provides an overview of the design of the electronics in Vector and his accessories

 VECTOR’S ELECTRONICS DESIGN. An overview of the Vector’s electronics design.

 HEAD-BOARD ELECTRONICS DESIGN. A detailed look at the electronics design of Vector’s

main processing board.

 BACKPACK & BODY-BOARD ELECTRONICS DESIGN. A detailed look at the electronics design of

Vector’s backpack and motor driver boards.

 ACCESSORY ELECTRICAL DESIGN. A look at the electrical design of Vectors accessories.

Note: In previous versions called the circuit board in the bottom half the “base-board”. It is now

referred to as “body-board” to match Anki’s naming

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 12

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 13

CHAPTER 2

Electronics Design

Description

This chapter describes the design of Vector’s electronics:

 Design Overview, outlining the main subsystems

 Power distribution

Subsequent chapters will examine in detail the design of the subsystems

6. DESIGN OVERVIEW

Vector’s design includes numerous features to sense and interact with his environment, other to

interact with people and express emotion and behaviour.

Backpack with button, touch

sensor, 4 microphones, and

4 segment RGB lights

LCD display for facial

expression, and HD

camera

Head and arm lift motors

with position encoders

Speaker for sounds and

speech

Two motors with encoders

and tracks

Motor control, battery & charger;

surface proximity sensors to

detect cliff; charging pads

Time of flight sensor to

sense environment

Figure 2: Vector’s

main elements

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 14

Vector’s functional elements are:

Element Description

backpack The top of Vector, where he has a button, segmented lights, and a touch sensor.

battery An internal battery pack is used as Vector’s source of energy.

button A momentary push button is used to turn Vector on, to cause him to listen – or to be quiet (and

not listen) – to reset him (wiping out his personality and robot-specific information).

camera Vector uses an HD camera to visualize his environment, and recognize his human companions.

charging pad Two pads on the bottom are used to replenish the energy in the battery pack from the dock.

The pads also serve as the communication interface during some manufacturing test steps.

LCD display An IPS LCD, with an active area is 23.2mm x 12.1mm. It has a resolution of 184 x 96 pixels,

with RGB565 color.

microphones There are 4 internal far-field microphone(s) to listen to commands and ambient activity level.

Employs beam forming to localize sounds.

motors & encoders There are four motors each with single-step optical encoders to measure their position and

approximate speed. One motor controls the tilt of the head assembly. Another controls the lift

of his arms. Two are used to drive him in a skid-steering fashion.

segmented RGB
lights

There are 4 LEDs used to indicate when he is on, needs the charger, has heard the wake word,

is talking to the Cloud, can’t detect WiFi, is booting, is resetting (wiping out his robot-specific

information).

speaker A speaker is used to play sounds, and for speech synthesis

surface proximity
sensors

4 infrared proximity sensors are used to detect the surface beneath Vector – and to detect drop

offs (“cliffs”) at the edge of his driving area, and to follow lines.

time of flight sensor A time of flight sensor is used to aid in mapping (by measuring distances) and object

avoidance.

touch sensor A touch allows Vector to detect petting and other attention.

Table 2: Vector’s main

elements

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 15

Vector has 6 circuit boards

Body-Board
Backpack

Board

Head Board

4 Motors4 MotorsMotors

4 Motors4 Motors
Shaft

Encoders

4 Motors4 Motors

Surface

Proximity

Sensors

Time of

Flight sensor

The main two boards are the head-board where the major of Vector’s processing occurs, and the

body-board, which drives the motors and connects to the other boards.

Body board for controlling

motors, charging battery;

proximity sensors to detect cliff;

charging pads

Main circuit board, LCD

display for facial expression,

and HD camera

The table below summarizes the boards:

Circuit Board Description

backpack board The backpack board has 4 RGB LEDs, 4 MEMS microphones, a touch wire, and a button.

This board connects to the body-board.

body-board The body board drives the motors, provides power management, and the battery charger. It has

two photo-interrupters – one for each of the tread motors – to encode the speed of movement.

encoder-boards The two encoder boards have dual-channel photo-interrupters each. These are used to monitor

the position and direction of movement of the arms and head, either as driven by the motor, or

by a person manipulating them.

head-board The head-board includes the main processor, flash & RAM memory storage, an IMU, and a

PMIC. The WiFi and Bluetooth LE are built into the processor. The camera and LCD are

attached to the board, thru a flex tape. The speaker is also attached to this board.

time of flight sensor
board

The time of flight sensor is on a separate board, allowing it to be mounted in Vector’s front.

Figure 3: Circuit

board topology

Figure 4: Vector’s

main microcontroller

circuit boards

Table 3: Vector’s

circuit boards

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 16

6.1. POWER SOURCE AND DISTRIBUTION TREE

Vector is powered by a rechargeable battery pack, and the energy is distributed by the body-board:

Battery
MP2617B

Charger

Backpack

Board

Head Board

Charging Pads

3.5V – 4.2v

Body Board

Motor Driver
To motors

When the charging pads are energized – when Vector is in the charging dock – the system is

powered by the external power source.

Excessive current demand – such as from a stalled motor – can trigger a system brown-out and

shutdown.

6.1.1 Battery

Vector battery is a single-cell 3.7v 320mAh “toy safe” lithium-ion polymer battery. The battery

is connected to the body-board. The pack is not a “smart” battery – it only has positive and

negative leads, lacking an onboard temperature sensor or battery management system (BMS).

Battery heat is the most significant source of battery “aging” – its effective service life. High

recharge rates internally heat the cells, causing them to deteriorate. Vector’s battery thinness gives

it a high surface area to volume ratio allowing it shed heat much faster, greatly reducing the

internal heating from charging and heavy loads. The battery is physically separated from the body-

board, isolating it from the heat generated in the charging, power distribution and motor driver

circuits. This increases the battery service life.

Vector takes care to thermally manage the battery, to promote a longer service life. The software

monitors the body board temperature (as a proxy of the battery temperature). When the

temperature gets above one or more thresholds (e.g. 50C), Vector can slow down or stops his

activities and charging to allow the battery cool.

The battery has a low internal resistance. This reduces the internal heating and allowing it to

usefully deliver higher currents without resulting in a brown-out. “Vector has brief but high (2A)

peak currents when doing certain computations or flipping himself with his lift.”

Anki engineers certainly desired easy-to-replace batteries, and larger batteries. But there were

challenges. Battery replacement requires more parts and design features. A larger battery would

allow longer play time between charges, but they often have higher internal resistance (thus more

prone to brown out). So it would have taken finding one with good thermal characteristics (i.e.

didn’t get too hot), was toy safe despite holding more charge and chemicals, and so on. Ultimately

schedule prevented finding a suitable larger battery.

Figure 5: Power

distribution

battery

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 17

6.1.2 Battery management

The MP2617B is a central element to managing the battery. It acts as a battery charger, a power

switch and power converter for the whole system.

 When Vector is going into an off state – such as running too low on power, going into a

ship state before first use, or has been turned off by a human companion – the MP2617B

charger and power converted can be signaled to turn off.

 When Vector is turned off the boards are not energized. The exception is that the high side

of the push button is connected to the battery. When closed, the signals the MP2617B to

connect the battery to the rest of the system, powering it up.

 The MP2617B is also responsible for charging the battery. There are two pads that mate

the dock to supply energy to charge the battery.

In many rechargeable lithium ion battery systems there is a coulomb counter to track the state of

charge. Vector does not have one. The need for recharge is triggered solely on the battery voltage.

6.2. MANUFACTURING TEST SUPPORT

Vector has an interface for test and manufacturing. The charging pads allow limited

communication with the software. This supports DVT testing, manufacturing tests, as well as

entering the serial number and other per unit information. This access is removed after

manufacturing test.

7. REFERENCES & RESOURCES

Anki, Lithium single-cell battery data sheet

https://support.anki.com/hc/article_attachments/360018003653/Material%20Safety%20Data

%20Sheet_April%202018.pdf

https://support.anki.com/hc/article_attachments/360018003653/Material%20Safety%20Data%20Sheet_April%202018.pdf
https://support.anki.com/hc/article_attachments/360018003653/Material%20Safety%20Data%20Sheet_April%202018.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 18

CHAPTER 3

Head-board

Electronics Design

Description

This chapter describes the electronic design of Vector’s head-board:

 Detailed design of the head-board

8. THE HEAD-BOARD (THE MAIN PROCESSOR BOARD)

The head-board handles the display, playing sounds, communication, and all of Vector’s real

processing. It is powered by a quad-core Arm-A7 Qualcomm APQ8009 microprocessor. The

processor also connects to Bluetooth LE and WiFi transceivers, an HD camera, LCD display,

speakers and an IMU.

APQ8009 Microprocessor

UART

PM8916

PMIC

Vpwr

Body-Board

Communication

S
P

I0

Camera

IMU

LCD

Flash/RAM

Bluetooth WiFi

UARTConsole UART

USBUSB

SPI1

Speaker

LCD

backlight

M
IP

I

I2
C

6

S
D

H
C

1

Figure 6: Head-board

block diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 19

The head-board’s functional elements are:

Element Description

Bluetooth LE
transceiver

A Bluetooth LE transceiver is built into the package

camera Vector uses a 720P camera to visualize his environment and recognize his human companions.

flash/RAM (eMMC) Flash and RAM are provided by single external package, a Kingston 04EMCP04-NL3DM627

mixed memory chip with 4 GB flash and 512MB RAM.

inertial
measurement unit
(IMU)

The headboard includes a 6-axis IMU – gyroscope and accelerometer – used for navigation and

motion control.

LCD backlight There are two LEDs used to illuminate the LCD display.

LCD display An IPS LCD, with an active area is 23.2mm x 12.1mm. It has a resolution of 184 x 96 pixels,

with RGB565 color.

microprocessor The head-board is based on a Qualcomm APQ8009 (Snapdragon 212). The processor is a

quad-core Arm A7 (32-bit) CPU.

power management
IC (PMIC)

The PM8916 power management IC provides voltage regulation for the processor, flash/RAM

and other parts; it also provides audio out to the speaker and controls the LCD backlight.

speaker A speaker is used to play sounds, and for speech synthesis

WiFi transceiver An 802.11AC WiFi transceiver is built into the processor package

8.1. THE APQ8009 PROCESSOR

The head-board is based on the Qualcomm “Snapdragon 212” APQ8009 SOC. It is a quad-core

processor; each core is a 32-bit ARM Cortex A7. It also includes a DSP (“Hexagon 536”), and

GPU (Adreno 304); these are not used by the software. It also includes WiFi and Bluetooth LE

transceivers. The processor has interfaces to external memory, for the camera (using MIPI), the

display, and the audio playback.

The APQ8009 processor is a sibling to the MSM8909 processor employed in cell phones, where

APQ is short for “Application Processor Qualcomm” and MSM is short for “Mobile Station

Modem.” The difference is that the later includes some form of modem, such as HPSA, CDMA,

or LTE. Both designators are used in software code-bases employed by Vector. The most likely

reason is the naming of registers, drivers, and other useful software didn't carefully limit the use of

MSMxxxx references to just the processors with modems.

The flash & RAM are connected to the processor on SDHC1. The device tree file shows that

during development Vector’s also supported an SD card slot on SDHC2.

The processor dynamically adjusts its clock frequency, within an allowed region. The processor

can be configured to limit its speed.

8.2. SPEAKER

The speaker is driven at 16bits, single channel, with a sample rate of 8000-16025 samples/sec.

Table 4: The head-

boards functional

elements

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 20

8.3. CAMERA

Vector has a 720p camera with a 120° field of view. The camera is calibrated at manufacturing

time. The camera vertical sync (frame sync) is connected to the interrupt input on the IMU to

synchronize the samples.

GPIO Description

26 Camera interface clock

48 Camera reset

83 Camera power enable (from PM8916 PMIC)

94 Camera standby

8.4. THE LCD

Vector’s LCD is a backlit IPS display assembly made by Truly. The processor is connected to

the LCD via SPI. Two LEDs are used to illuminate the LCD. The backlight is PWM controlled

by the PM8916 PMIC.

The prior generation, Cozmo, used an OLED display for his face and eyes. This display had the

strengths of high contrast and self-illumination. However, OLEDs are susceptible to burn-in and

uneven dimming or discoloration of overused pixels. Anki addressed this with two

accommodations. First it gave the eyes regular motion, looking around and blinking. Second, the

LCD’s illuminated rows were regularly alternated to give a retro-technology interlaced row effect,

like old CRTs.

Vector’s IPS display gives a smoother imagery – Cozmo’s OLED was simply black and white.

The LCD is also much less susceptible to burn-in, at the expense of higher power. Vector’s LCD

can also develop dead lines (or pixels) that grow in number until the display is non-functional.

Some units have a defective LCD, where the glass is not properly sealed. This allows moisture in,

causing progressive damage to the LCD. It is also speculated that these lines come from shocks to

the head, causing breaks in the LCD connections.

8.5. POWER MANAGEMENT

The PM8916 PMIC is responsible for providing power and managing most of the power. The

headboard is capable of being the highest power consumer in Vector. By limiting the clock rate of

the processor, the power use can be capped.

 The headboard can be put into a lower power state by reducing the clock rate of processor and

using its sleep features; dimming or turning off the LCD, and reducing the camera frame rate (or

turning it off). The APQ8009 processor has many sophisticated power controls, but these were not

fully realized in Vector’s software.

8.6. TRIM, CALIBRATION SERIAL NUMBERS AND KEYS

Each Vector has a set of per unit calibrations:

 The camera is calibrated

 The IMU is calibrated

Table 5: The camera

controls

LCD display

US Patent 20372659

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 21

 The motor position is calibrated, this is performed with each startup

There are per unit keys, MAC addresses and serial numbers

 Each processor has its own unique key called the silicon-based hardware key (SHK),

burned into its fuse mask. This key is used to with the Trust Zone, and secure boot; but it

is not accessible outside of these. There are several modules (trustlets) that must run in the

TrustZone, most provide security on keys that the main system uses. Each of these

trustlets are signed with a certificate chain that is rooted in the unique hardware key. (That

is, they cannot be copied and used on another processor.)

 The WiFi and Bluetooth have assigned, unique MAC addresses.

 Each Vector has an assigned serial number

8.7. MANUFACTURING TEST CONNECTOR/INTERFACE

It is a common practice to include at least one interface on a product for use during manufacture.

This is used to load software and firmware, unique ids – WiFi MACs, serial number – to perform

any calibration steps and to perform run-up checks that the device functions / is assembled

correctly. It is intended to be a fast interface that doesn’t cause yield fallout. Typically (but there

are exception) this is not radio based, as they can interfere or have fiddly issues.

The USB interface is used to load firmware. The microprocessors include a built-in boot-loader

(ABOOT), which includes support for loading firmware into the devices flash.

For the other functions, there are three possibilities

 There is a UART, that provides a boot console, but does not accept input

 There is a USB connector that probably is used to load firmware.

 The WiFi, once MAC addresses have been loaded into the unit

9. REFERENCES & RESOURCES

Kingston Technology, Embedded Multi-Chip Package 04EMCP04-NL3DM627-Z02U, rev 1.2,

2016

https://cdn.discordapp.com/attachments/573889163070537750/595223765206433792/04EM

CP04-NL3DM627-Z02U_-_v1.2.pdf

Qualcomm, APQ8009 Processor

https://www.qualcomm.com/products/apq8009

Qualcomm, PM8916/PM8916-2 Power Management ICs Device Specification, Rev C, 2018 Mar

13

https://developer.qualcomm.com/qfile/29367/lm80-p0436-

35_c_pm8916pm8916_power_management_ics.pdf

https://cdn.discordapp.com/attachments/573889163070537750/595223765206433792/04EMCP04-NL3DM627-Z02U_-_v1.2.pdf
https://cdn.discordapp.com/attachments/573889163070537750/595223765206433792/04EMCP04-NL3DM627-Z02U_-_v1.2.pdf
https://www.qualcomm.com/products/apq8009
https://developer.qualcomm.com/qfile/29367/lm80-p0436-35_c_pm8916pm8916_power_management_ics.pdf
https://developer.qualcomm.com/qfile/29367/lm80-p0436-35_c_pm8916pm8916_power_management_ics.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 22

CHAPTER 4

Backpack & Body-

board Electronics

Design Description

This chapter describes the electronic design of the Anki Vector’s supplemental boards:

 Detailed design of the backpack-board, which is a peripheral to the body-board

 Detailed design of the body-board

 Power characteristics

See also Appendix E for the body-board connectors and pin maps.

10. THE BACKPACK BOARD

The backpack board is effectively daughter board to the body-board. It provides extra IO and a

couple of smart peripherals:

Bat+

Push button
Button

state

74AHC164

Touch

Clock

& Data

Vpwr

4 RGB

LEDs

4 RGB

LEDs

4 RGB

LEDs

4 MEMs

Microphones

4 MEMs

Microphones

4 MEMs

Microphones

Clock

& Data

C
o

n
n

e
c
to

r

Figure 7: Backpack

board block diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 23

The table below summarizes the functional elements of the backpack board:

Elements Description

74AHC164 A SPI-like GPIO expander. This is used to drive the RGB LEDs.

microphones There are 4 far-field MEMS PDM microphones. The microphones are accessed via SPI, in an

output only mode. These are designated MK1, MK2, MK3, MK4

push button A momentary push button is connected to the battery terminal, allowing a press to wake

Vector, as well as signal the processor(s).

RGB LEDs There are 4 RGB LEDs to make up a segmented display. Each segment can be illuminated

individually (in a time multiplexed manner) or may share a colour configuration with its

counterparts.

touch sensor A touch-sensing wire (and passive components)

10.1. BACKPACK CONNECTION

The backpack connection includes:

 Power and ground connections. This includes connection to the battery rail.

 The touch wire as an analog signal to the body-board

 A quasi digital signal out from the momentary push button

 A SPI-like clock, two master-in-slave-out (MISO) signals for the microphones

 A SPI-like clock and master-out-slave-in (MOSI) for the 74AHC164 LED controller

10.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION

The touch sensing uses an insulated wire separated from the external touch plate. There is no

direct path of conduction from the external plate for ESD. The separation reduces transient voltage

to levels that the electronics can suppress.

10.3. OPERATION

The touch sensor conditioning and sensing is handled by the body-board. The touch sense wire is

merely an extension from the body-board through the backpack board.

The push-button is wired to the battery. When pressed, the other side of the push button signals

both body-board microcontroller, and (if Vector is off) the charger chip to connect power. The

theory of operation will be discussed further in the body-board section below.

The 74AHC164 serial-shift-register is used as a GPIO expander. It takes a clock signal and serial

digital input, which are used to control up to 8 outputs. The inputs determine the state of 8 digital

outputs used to control the RGB LEDs.

Each of the 4 MEMS microphones take a clock signal, and provide a serial digital output. The

body-board reads all four microphones by simultaneously. (This will be discussed in the body-

board section).

Table 6: Backpack

board functional

elements

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 24

10.3.1 The LED controls

8 outputs are not enough to drive 4 RGB LEDs (each with 3 inputs) simultaneously with

independent colors. While 3 of the LEDs often the same colour , they can have independent

colors.

There are two possible topologies that can multiple the RGB signals on the 74AHC164 directing

different RGB configurations to each light.6 The first possibility is two lights are driven at a time.

LEDs 1 & 2 share the same red, green, and blue signals, but their low side is connected to separate

GPIO lines, acting as a LED select. LEDs 3 & 4 are the same – sharing red, green, and blue. The

even LEDs would share the same select line, and the odd LEDs would share the same. This is the

simplest.

LED1

LED274AHC164

LED3

LED4

Select

Select

Clock

Data

The process of illuminating the lights would be:

1. The firmware would send the RGB signals for LEDs 1 and 3, enabling them and disabling

LEDs 2 and 4.

2. Delay

3. Repeat for LEDs 2 and 4

The second possibility is that each LED’s red signal goes to the same signal on 74AHC164; similar

for green and blue. However each LED’s low side is connected to separate signals on 74AHC164.

LED1

LED274AHC164

LED3

LED4

Select

Clock

Data

This approach takes more work. The process of illuminating the lights in this configuration would

be:

1. The RGB color and light 1 signal enables are sent, illuminating the first light

2. Then the RGB color and light 2 signal enables are sent – but the first light signal is

disabled – illuminating the second light

6 I’d need to physically examine a backpack board. This is the limit of examining the available photos

Backpack LED control

scheme

corrections by Melanie

T

Figure 8: Possible

light topology on

backpack board

Figure 9: Another

possible light topology

on backpack board

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 25

3. This is repeated for each of the other lights.

With either approach, if the switching between the LED’s is done quickly enough – in a short time

interval – the off period isn’t visible. LED’s don’t immediate turn off, rather their brightness

decays over a short period. And the human eye doesn’t perceive short flickers. Although the

lights are “pulse width modulated” – they are turned off a portion of the time, dimming them –

current limiting resistors may have been set to achieve the desired maximum brightness for the

fastest multiplexing time.

The body-board controller can dim the brightness of the LEDs further by choosing larger numbers

of time slots to not illuminate a light.

11. THE BODY-BOARD

The body board is a battery charger, smart IO expander, and motor controller. It connects the

battery to the rest of the system and is responsible for charging it. It is based on an STM32F030

which acts as second processor in the system.

Push button

74AHC164 4 RGB

LEDs

4 RGB

LEDs

4 RGB

LEDs

4 MEMs

Microphones

4 MEMs

Microphones

4 MEMs

Microphones

Battery

STM32F030

Microcontroller

(system controller)

I2
C

A
D

C

UART

G
P

IO

G
P

IO

Backpack Board

SPI

Battery

Switch

4 Motor

Drivers

4 Motor

Drivers

4 Motor

Drivers 4 Motors4 Motors4 Motors

MP2617B

Charger

4 Motors4 Motors

4 Optical

shaft

Encoders

Vpwr

Regulator

Charging

Terminal

Reverse

Polarity

Protection

ADC

Touch

E
S

D
 P

ro
te

c
ti
o

n

4 Motors4 Motors

4 Surface

Proximity

Sensors

Time of Flight

Sensor

Head-Board

Communication
PWM/

GPIO

I2
C

 /

S
P

I Counter

GPIO

Figure 10: Body-

board block diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 26

The functional elements of the body-board are:

Element Description

battery An internal, rechargeable battery pack (3.7v 320 mAh)

battery switch Used to disconnect the battery to support off-mode (such as when stored) and to reconnect the

battery with a button press.

charging pad Two pads on the bottom are used to replenish the energy in the battery pack from the dock.

The right, positive charging pad acts a communication interface as well.

motor driver There are four motor drivers, based on an H-bridge design. This allows a motor to be driven

forward and backward.

motors There are four motors: one motor controls the tilt of the head assembly; another controls the

lift of his arms; and two are used to drive him in a skid-steering fashion.

MP2617B charger The Monolithic Power Systems MP2617B serves as the battery charger. It provides a state of

charge to the microcontroller. It also directs power from the charging pads to the rest of the

system while the robot is on the charging dock.

optical shaft encoder The 4 shaft encoders are implemented with photo-interrupters, in conjunction with a slotted

disc on a motor’s shaft, is used to measure the amount a shaft has turned, and its speed. The

two tread motors use a Sharp GP1S092HCPIF photo-interrupter. The lift and head motors use

a dual-channel photo-interrupter to allow discerning the direction of rotation.

regulator A 3.3v regulator is used to supply power to the microcontroller and logical components.

reverse polarity
protection

Protects the circuitry from energy being applied to the charging pads in reverse polarity, such

as putting Vector onto the charging pads in reverse.

STM32F030
microcontroller

The “brains” of the body-board, used to drive the motors, and RGB LEDs; to sample the

microphones, time of flight sensor, proximity sensor, temperature, and the touch sense;, and

monitoring the battery charge state. It communicates with the head-board.

surface proximity
sensors

4 infrared proximity sensors are used to detect the surface beneath Vector – and to detect drop

offs (“cliffs”) at the edge of his driving area and to follow lines.

VL53L0x time of
flight sensor

A ST Microelectronics VL53L0x time of flight sensor is used to measure distance to objects in

front of Vector. This sensor is connected by I2C.

11.1. POWER MANAGEMENT

The battery charging is based on a MP2617B IC, which also provides some protection functions.

There is no Coulomb counter; the state of charge is based solely on the battery voltage.

11.1.1 Protections

The charging pads have reverse polarity protection.

The MP2617B has an over-current cut off. If the current exceeds ~5A (4-6A), the battery will be

disconnected from the system bus. Such a high-current indicates a short. There is no fuse.

The MP2617B has a low voltage cut off. If the battery voltage drops below ~2.4 (2.2-2.7V) the

battery will be disconnected from the system bus (TBD) until the battery voltage rises above ~2.6V

(2.4-2.8V).

The MP2617B may have a temperature sense. If the temperature exceeds a threshold, charging is

paused until the battery cools. The temperature sense is not on the battery. It would be on the

circuit board.

Table 7: The body-

board functional

elements

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 27

11.1.2 Battery connect/disconnect

To preserve the battery there is a need to isolate the battery from the rest of the system when in an

off state. If there is minute current draw, the battery will irreversibly deplete while in storage even

before the first sale. This constraint shapes the battery disconnect-reconnect logic. The schematic

below shows one way to do this:

VbatBat+

Backpack

push button

Button

state

Pwr

Enable

Two MOSFETS (a PFET and NFET)7 act as a switch. These are in a single package, the

DMC2038LVT. (This part is also used in the motor drivers.)

 When the system is in an off state, the MOSFETs are kept in an off state with biasing

resistors. The PFET’s gate is biased high with a resistor. The NFET gate is biased low, to

ground. There is no current flow. Two MOSFETS are needed due to internal body diodes.

The PFET body diode would allow current to flow from the battery (from the source to the

drain). However, this current is blocked by the NFET body diode, which has a different

polarity

 The push button can wake the system. When the button is closed, the battery terminal

(Bat+) is connected to the gate of the NFET, turning it on. A second NFET is also

energized, pulling the PFET gate to ground, turning it on as well. When the button is open,

Bat+ is not connected to anything, so there is no leakage path draining the battery.

 To keep the system energized when the button is open, the STM32F030 MCU must drive

the Pwr Enable line high, which has the same effect as the button closed. The gate

threshold voltage is 1V, well within the GPIO range of the MCU.

 The MCU can de-energize the system by pulling Pwr Enable line low. The switches will

open, disconnect the battery.

 The MCU needs to be able to sense the state of the button while Pwr Enable is pulled high.

The MCU can do this by sampling the Button State signal. This signal is isolated from

from Pwr Enable by a large resistor and pulled to ground by smaller resistor. This biases

the signal to ground while the button is open.

This circuit also provides reverse polarity protection. It will not close the switch if the battery is

connected backwards.

11.1.3 Charging

The charging station pads are connected to a MP2617B charger IC thru a reverse polarity

protection circuit. The reverse polarity protection8 is a DMG2305UX PFET in a diode

7 Q11 and/or Q12
8 Q14

Figure 11: A

representative battery

connect switch

charging station pads

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 28

configuration. This approach has much lower losses than using an equivalent diode.

To MP2617Charger+

The MP2617B internally switches the charger input voltage to supply the system with power, and

to begin charging the battery. This allows the charger to power the system whenever the robot is

in the charging station, even when the battery is depleted, or disconnected.

The presence of the dock power, and the state of MP2617B (charging or not) are signaled to the

microcontroller.

The charger goes through different states as it charges the battery. Each state pulls a different

amount of current from the charging pads and treats the battery differently.

Time

B
a

tt
e

ry
 V

o
lt

a
g

e

C
h

a
rg

e
 C

u
rr

e
n

t

1C
4.1V

3V

0.1C

3.9V

Constant Current to Constant Voltage transition

4.1V (default)

End of Charge

Current

0.1C (Default)

Prequalification to Fast Charge transition

Battery

Voltage

Battery

Current

The basic idea is that the charger first applies a low current to the battery to bring it up to a

threshold; this is called prequalification in the diagram. Then it applies a high current, call

constant current. Once the battery voltage has risen to a threshold, the charger switches to

constant voltage, and the current into the battery tapers off. I refer to the data sheet for more detail.

The MP2617B measures the battery temperature by proxy using a thermistor on the PCBA. If the

temperature exceeds a threshold, charging is paused until the battery cools. The microcontroller

also samples this temperature.

The MP2617B supports limiting the input current, to accommodate the capabilities of external

USB power converts. There are four different possible levels that the IC may be configured for:

2A is the default limit, 450mA to support USB2.0 limits, 825mA to support USB3.0 limits, and a

custom limit that can be set by resistors. The input limit appears to be set for either default (up to

~2A input), or a programmable input.

Commentary. In my testing, using a USB battery pack charging pulls up to 1A during the

constant current, then falls off to 100mA-200mA during constant voltage, depending on the

Figure 12: A

representative PFET

based reversed

polarity protection

supplying power from

the charging station

charging states

Figure 13: Charging

profile (adapted from

Texas Instruments)

constant current

constant voltage

input current limits

Higher charge rates

are acceptable

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 29

head-board’s processing load. Stepped down to the ~4V battery the applied current at peak is

approximately 1A.9

With larger batteries this would be too high. Battery cells are normally charged at no more than a

“1C” rate – e.g. the battery maximum charge rate “should” be 320mA at max. Vector’s battery can

be charged at a rate higher than 1C. Heat is what damages batteries. This battery’s low internal

resistance doesn’t produce as much heat; and its large surface to volume ratio lets it shed heat.

11.1.4 Brown-out

The motor stall current is enough to cause Vector to brown-out and shut down unexpectedly.

This indicates two possible mechanisms:

 If the system browns out the STM32F030, the MCU will no longer hold the power switch

closed, and the system power will be disconnected.

 If the current exceeds a threshold, the MP2617B will disconnect power to the system. This

threshold is very high – ~5A – and is unlikely to ever be encountered in operation.

Commentary: It may be interesting to modify either the MCU’s Vdd to have a larger retaining

capacitor, or to add a current limiting mechanism for the motors, such as an inline resistor.

11.1.5 Reducing power

The sensors – the encoders, cliff sensors, and time of flight sensor – have power controls. This

allows them to be turned off to reduce power consumption. The time of flight sensor’s sampling

and communication interval can be controlled to greatly reduce power consumption, while still

providing measurements. The other sensors can be duty cycled to maintain a lower power use, but

still detect activity (albeit not measure it accurately).

11.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION

The body-board employs a Vishay GMF05, TVS diode (U4) for electro-static discharge (ESD)

protection, likely on the pushbutton and touch input.

11.3. STM32F030 MICROCONTROLLER

The body-board is controlled by a STM32F030C8T6 microcontroller (MCU), in a LQFP48

package. This processor essentially acts as a smart IO expander and motor controller. The

microcontroller is also referred to as the system controller

The MCU’s digital inputs include:

 4 photo-interrupters used as shaft encoders, one for each motor (left, right, head, lift)

 Charger state

The MCU’s digital outputs include:

 12 motors driver signals

 Charger enable

 Power controls for the sensors

9 Other reports suggest up to 2As into the battery, possible with the use of high-power USB adapters intended to support tablet recharge.
As a preventative measure, I have a current limiter between my USB power adapter and Vector’s charging dock. 1Ω on the USB

power. I tried 1Ω -14Ω; these should have limited the current to 1A and 500mA respectively. Instead, Vector would only pull 40mA -

370mA; in many cases, not enough to charge. Most likely the resistor acted as a part of resistive divider and undermined the chargers
feedback loops.

motor stall & brown

out effects

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 30

The MCU’s analog inputs include:

 Touch sensor; the momentary push button works by pulling this signal high

 Battery voltage

 Charging pad voltage

 Temperature sensor (measured internally)

The communication signals include:

 2 SPI-like signals to LED outputs. Uses a clock and data line to send the state to the LEDs.

 6 SPI from microphones – an SPI MCLK to clock out, a timer divider (in and out), and 2

MISO to receive state of the data from the microphones.

 4 I2C pins for communication with the time of flight sensor and IR proximity sensors used

to detect cliffs and lines,

 2 UART, for communication with the head board

Note: The microcontroller does not have an external crystal and uses an internal RC oscillator

instead.

11.3.1 Manufacturing test connections

The body-board includes SWD pads intended for programming at manufacturing time. After

programming, the firmware cannot be updated via the SWD pads (more on this below). The

firmware can only be updated via a boot-loader.

The body-board also provides RS232-style bidirectional communication that can be used issue

commands, query results, and store calibration and serial number information. See Chapter 12

Body-Board Communication Protocol for more information. The positive (right hand) charging

contact is used for this communication.10

11.3.2 Firmware updates

The firmware is referred to as “syscon” (as in “system controller”). The microcontroller includes a

boot loader, allowing the firmware to be updated by the head-board. The firmware can be updated

in OTA software releases.

STM32 Readout-protection is set to the highest level in the microcontroller. This is intended to

prevent a SWD-based reading or modification of the firmware (including the boot-loader). STM32

processors include a different boot-loader from ST as well; this alternative boot-loader will crash if

any access to program memory is attempted with the readout protection flags set. It is possible to

disable the read-out protection – but mass erasing the chip in the process – with physical access

and SWD tools.11 To extract the boot-loader will more skilled and invasive techniques.12

Future changes to the body-board firmware will require expertise. The STM32F030 firmware can

be analyzed using the syscon.dfu file (or be extracted with a ST-Link) and disassembled. Shy of

recreating the firmware source code, patches replacing a key instruction here and there with a jump

to the patch, created in assembly (most likely) code to fix or add feature, then jump back.

10 According to the forums, this is also present on Cozmo and Drive.
11 https://stackoverflow.com/questions/32509747/stm32-read-out-protection-via-openocd
12 https://rtfm.newae.com/Capture/ChipWhisperer-Nano/
https://www.cl.cam.ac.uk/~sps32/mcu_lock.html

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 31

Emulation (such as QEMU-STM32) , ST-link ($25) and a development environment will be

required to debug and modify the firmware initially. The development environment ranges from

free to several thousand dollars, the later being the more productive tools.

11.4. SENSING

11.4.1 Temperature sensing

The body-board measures temperature using the microcontrollers internal temperature sense. This

value is higher than the ambient, and can bounce around with activity. The firmware filters the

value to reduce the noise.

11.4.2 Time of Flight sensor

The MCU interfaces with a ST Microelectronics VL53L0x time of flight sensor, which can

measure the distance to objects in front of vector. It “has a usable range 30mm to 1200mm away

(max useful range closer to 300mm for Vector) with a field of view of 25 degrees.”

These sensors work by timing how long it takes for a coded pulse to return. The time value is then

converted to a distance. Items too close return the pulse faster than the sensor can measure. The

measured distance is available to the microcontroller over I2C.

11.4.3 Proximity sensing

Vector has 4 IR proximity sensors that are used to used to detect drops offs (“cliffs”) and to follow

lines. The exact model hasn’t been identified, but the Everlight EAAPMST3923A2 is a typical

proximity sensor. The sensor is an LED and IR detector pair. The sensor reports, via I2C, the

brightness sensed by the detector. A sensor often pulses its emitter, to reject to sunlight; and uses

a configurable threshold to reduce sensitivity to ambient light.

The IR proximity sensors all share the same I2C address. To address this, the body board does

something clever. The STM32F030 allows switching the pins that the I2C clock and data lines go

to. The cliff sensors are connected so that no two shares both the same data and clock line – that is

the clock and data lines combinations are unique to the device being talked with. The firmware

rotates thru which pins to use with I2C to talk to each of the four different cliff sensors. The pins on

the micro are reconfigured to use each of these.

11.4.4 Touch sensing

The touch sensing works by alternating pulsing and sampling (with the ADC) the touch wire.

The samples will vary “by various environmental factors such as whether the robot is on its

charger, being held, humidity, etc.”

11.4.5 Motor encoders

The position encoders are built using photo-interrupters. The tread motors have slotted photo-

interrupters with a single emitter and detector. The detectors are connected to pins capable of

raising interrupts.

The lift and head motors have dual channel photo-interrupters – two detectors. This allows

discerning the direction of rotation, by the sequence that the detectors trigger in.

Anki SDK

Anki SDK

Figure 14: Single

channel slotted photo-

interrupter

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 32

Power control: The microcontroller has a pin connected to the low side of the emitters. When set

low, the emitters are powered (connect to ground); otherwise the emitters are in a low power state.

11.4.6 PDM Microphones

The body-board is responsible to driving and sampling the 4 PDM MEMs microphones. The

communication with the backpack board to accomplish this is unique: the four microphones are

read at a time, using a shared SPI clock and two separate data lines.

The microphones take a clock signal as input, and always drive one bit per clock; they have no

chip select. Two microphones can share a single data line. We’ll refer to them as “left” and

“right” here.

Vdd

PDM

Modulator

Left/Right

Left Data out

Right Data out

PDM

Modulator

Left/Right

Gnd

PDM Clock

SPI

Clock

divider

SPI Clock

Pulling the left microphone’s “left/right” signal low will configure it to emit the data bit while the

PDM clock is low. It does not drive the data line when the clock is high. Similarly, pulling the

right microphone’s “left/right” signal high on will cause it to drive the data bit while the PDM

clock is high.

SPI, however, only receives data bits on the clock’s falling transition– not the rising edge. The

trick is to run the SPI clock at twice the frequency of the PDM clocks, so that the SPI clock’s first

transition low is for the left microphone bit, and the second transition low is for the right

microphone. This is done by dividing the SPI clock by two to produce the PDM clock to the

microphones:

PDM Clock

Right Data Out

Left Data Out

Data Out

SPI Clock

Figure 15: Dual

channel slotted photo-

interrupter

SPI communication

with 4 microphones

simultaneously

Figure 16: Sampling

two microphones with

a single SPI master

(adapted from ST

Microelectronics)

Figure 17:

Microphone clock and

signals

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 33

The received data bits (in each byte) will alternate between the left and right microphones, and will

need to be separated and converted by firmware. The SPI peripheral along with a DMA can be

configured to clock in large batches of bytes into a buffer for further processing.

Dividing the clock by two can be performed by a timer built into the STM32. The SPI clock signal

is connected to the input of an STM32 timer (TIMxCHIN). The timer is configured to use an external

input clock source, and generate an output after a divide by two. The output of the timer

(TIMxCHOUT) can then be used as the clock for the PDM microphones.

The clock rates have a limited range on the body board. PDM MEMS microphones clock rates

must be in the range 1 MHz to 3.25MHz. (The products are pretty consistent about this range.)

The SPI clock rate is 2x that PDM’s clock, so the SPI clock rate must be in the range of 2MHz to

6.5MHz. The ST processor’s clock is 48MHz, and its SPI clock must be this frequency divided by

a power of two. This means there are only two possibilities: A 32:1 divider gives an SPI clock

frequency of 6 MHz, and A 16:1 divider gives a clock rate of 3 MHz.

This approach can be extended to sample all four microphones, by coordinating with a second SPI

peripheral:

Vdd

PDM

Modulator

Left/Right

Left Data out

Right Data out

PDM

Modulator

Left/Right

Gnd

PDM Clock

SPI1

Clock

divider

SPI Clock

Vdd

PDM

Modulator

Left/Right

Left Data out

Right Data out

PDM

Modulator

Left/Right

Gnd

PDM Clock

SPI2

11.5. OUTPUTS

11.5.1 Light control

An earlier section (see section 10.3.1 The LED controls) described how the 74AHC164 receives its

GPIO settings from a serial interface, and uses these to illuminate the LED segments within 4 RGB

LEDs.

Data
STM32F030

Clock

74AHC164 4 RGB

LEDs

4 RGB

LEDs

4 RGB

LEDs

Figure 18: Sampling

four microphones with

two SPI masters

(adapted from ST

Microelectronics)

Figure 19: SPI-like

interface to the

74AHC164 and RGB

LEDs

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 34

The 74AHC164 does not share a clock or data line with the PDM’s microphones. The data and

clock are bit-banged – the firmware manually raises and lowers the clock and data lines to send the

data.

Note: care must be taken so that an extra clock edge isn’t received by the 74AHC164. (For

instance, during body board initialization.) There is no synchronization to indicate the first bit of

the 8 bits sent to the 74AHC164.

11.5.2 Motor Driver and control

Each motor driver is an H-bridge, allowing a brushed-DC motor to turn in either direction.

Each side of the H-bridge based on the DMC2038LVT, which has a P-FET and N-FET in each

package. Two of these are needed for each motor.

The MCU (probably) independently controls the high side and low side to prevent shoot thru. This

is done by delaying a period of time between turning off a FET and turning on a FET. The

microcontroller drives the PFET by using its GPIO output in open-collector/open-drain

configuration: it turns the FET on by pulling gate low, and lets a resistor pull the gate high (to

battery supply) to turn the FET off.

The motors can be controlled with a control loop that takes feedback from the optical encoder to

represent speed and position. The firmware must take care to prevent burn out if they have been

stalled at full power for 15 seconds or more.

11.6. COMMUNICATION

The communication protocols are described in Chapter 12.

11.7. COMMUNICATION WITH THE HEAD-BOARD

The body-board communicates with the head-board via RS-232 3.3V (3 Mbits/sec13). As the MCU

does not have a crystal, there may be communication issues from clock drift at extreme

temperatures; since Vector is intended for use at room temperature, the effect may be negligible.

The body-board does something clever to communicate at such a high rate, while supporting the

other functions. The issue is that the microcontroller does not have enough DMA resources for the

UART and the SPI channels. The DMA has fixed channels to support the SPI receive, but this is

13 Value from analyzing the firmware, RAMPOST and vic-switchboard programs. Melanie T measured it on an oscilloscope and
estimated it to be 2Mbps.

Figure 20: Motor

driver H-bridge

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 35

the same as the channel available for the UART TX. But there are two remaining DMA channels

available for the UART RX function.

To send data to the head board, the firmware retasks one of these DMA channels. The DMA

peripheral doesn’t care which address it sends to or receives from; nor does it enforce direction.

What it means to be a “UART RX” channel is that it looks at the high bits of the address of the

peripheral it is connected to – the UART in this case – and uses that to transfer each byte when a

“received byte” event is received from the UART. The firmware configures the DMA channel to

transfer a byte to the UART TX channel… and the DMA will transfer a byte only when the UART

receives a byte. To ensure that a byte is received, a weak resistor is connected from the TX to the

RX line so that the UART is receiving each byte it sends, triggering the next byte to be sent.

The firmware can be updated over the serial communication by the head-board.

11.7.1 Communication with manufacturing test station

The body-board communicates with the test station using a RS-232 1.8V (115.2 Kbits/sec14) half-

duplex protocol. The communication pin is also used for measuring the charger input voltage.

The firmware can be updated over the serial communication by the head-board.

Note: this communication is only implemented in DVT firmware; it is not implemented in

production firmware.

12. REFERENCES & RESOURCES

Amitabha, Benchmarking the battery voltage drain in Anki Vector and Cozmo, 2018 Dec 31

https://medium.com/programming-robots/benchmarking-the-battery-voltage-drain-in-anki-

vector-and-cozmo-239f23871bf8

Diodes, Inc, 74AGC164 8-Bit Parallel-Out Serial Shift Registers, Rev 2, 2015 Aug

https://www.diodes.com/assets/Datasheets/74AHC164.pdf

Diodes Inc, DMG2305UX P-Channel Enhancement Mode MOSFET

https://www.diodes.com/assets/Datasheets/DMG2305UX.pdf

Diodes, Inc, DMC2038LVT Complementary Pair Enhancement Mode MOSFET

https://www.diodes.com/assets/Datasheets/products_inactive_data/DMC2038LVT.pdf

Entinger, Alexander; Anki Vector base-board connector

https://github.com/aentinger/anki-vector-baseboard

Everlight EAAPMST3923A2

Monolithic Power, MP2617A, MP2617B 3A Switching Charger with NVDC Power Path

Management for Single Cell Li+ Battery, Rev 1.22 2017 Jun 29

https://www.monolithicpower.com/pub/media/document/MP2617A_MP2617B_r1.22.pdf

Panda, a data sheet for a similar single-cell lithium battery

https://panda-bg.com/datasheet/2408-363215-Battery-Cell-37V-320-mAh-Li-Po-303040.pdf

Sharp GP1S092HCPIF Compact Transmissive Photointerrupter, 2005 Oct 3

https://datasheet.lcsc.com/szlcsc/Sharp-Microelectronics-GP1S092HCPIF_C69422.pdf

ST Microelectronics, STM32F030x8, Rev 4, 2019-Jan

https://www.st.com/resource/en/datasheet/stm32f030c8.pdf

ST Microelectronics. AN5027 Application Note: Interfacing PDM digital microphones using

STM32 MCUs and MPUs, Rev 2, 2019 July

https://www.st.com/resource/en/application_note/dm00380469-interfacing-pdm-digital-

microphones-using-stm32-mcus-and-mpus-stmicroelectronics.pdf

14 Value from analyzing the firmware.

https://medium.com/programming-robots/benchmarking-the-battery-voltage-drain-in-anki-vector-and-cozmo-239f23871bf8
https://medium.com/programming-robots/benchmarking-the-battery-voltage-drain-in-anki-vector-and-cozmo-239f23871bf8
https://www.diodes.com/assets/Datasheets/74AHC164.pdf
https://www.diodes.com/assets/Datasheets/DMG2305UX.pdf
https://www.diodes.com/assets/Datasheets/products_inactive_data/DMC2038LVT.pdf
https://github.com/aentinger/anki-vector-baseboard
https://www.monolithicpower.com/pub/media/document/MP2617A_MP2617B_r1.22.pdf
https://panda-bg.com/datasheet/2408-363215-Battery-Cell-37V-320-mAh-Li-Po-303040.pdf
https://datasheet.lcsc.com/szlcsc/Sharp-Microelectronics-GP1S092HCPIF_C69422.pdf
https://www.st.com/resource/en/datasheet/stm32f030c8.pdf
https://www.st.com/resource/en/application_note/dm00380469-interfacing-pdm-digital-microphones-using-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00380469-interfacing-pdm-digital-microphones-using-stm32-mcus-and-mpus-stmicroelectronics.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 36

ST Microelectronics. Touch sensing

https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4

d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM004456

57.pdf

https://www.st.com/en/embedded-software/32f0-touch-lib.html

https://hsel.co.uk/2016/05/22/stm32f0-software-capacitive-touch/

https://github.com/pyrohaz/STM32F0-SoftTouch

ST Microelectronics. Tutorial for MEMS microphones, Rev2, 2017 Feb

https://www.st.com/resource/en/application_note/dm00103199-tutorial-for-mems-

microphones-stmicroelectronics.pdf

ST Microelectronics. VL53L0X World’s smallest Time-of-Flight ranging and gesture detection

sensor, Rev 2, 2018 Apr

https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html

https://www.st.com/resource/en/datasheet/vl53l0x.pdf

https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM00445657.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM00445657.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM00445657.pdf
https://www.st.com/en/embedded-software/32f0-touch-lib.html
https://hsel.co.uk/2016/05/22/stm32f0-software-capacitive-touch/
https://github.com/pyrohaz/STM32F0-SoftTouch
https://www.st.com/resource/en/application_note/dm00103199-tutorial-for-mems-microphones-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00103199-tutorial-for-mems-microphones-stmicroelectronics.pdf
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://www.st.com/resource/en/datasheet/vl53l0x.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 37

CHAPTER 5

Accessory Electronics

Design Description

This chapter describes the electronic design of the Anki Vector accessories:

 The charging station

 The habitat (Vector space)

 The companion cube

13. CHARGING STATION

The charging station is intended to provide energy to Vector, allowing him to recharge.

Home symbol that Vector

can identify

USB power

cord

Visual path for Vector to

follow

Terminals to charge

Vector

The charging station has a USB cable that plugs into an outlet adapter or battery. The adapter or

battery supplies power to the charging station. The base of the station has two terminals to supply

+5V (from the power adapter) to Vector, allowing him to recharge. The terminals are offset in

such a way to prevent Vector from accidentally being subject to the wrong polarity. Vector has to

be backed into charging station in mate with the connectors. Vector face-first, even with his arms

lifted, will not contact the terminals.

The charging station has an optical marker used by Vector to identify the charging station and its

pose (see chapter 21).

USB

Connector

Charging

Terminals

Figure 21: Charging

station main features

Figure 22: Charging

station block diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 38

14. HABITAT (VECTOR SPACE)

Vector’s habitat – cheekily called a Vector Space – is a 12”x12” tray with curved edge, and a

corner for a charging dock to sit. It serves as a place that Vector can be active in during the day,

without driving off of the table or getting lost. This lets him remain powered on, and respond

when his human companion returns. When a person would like to play with Vector, they would

take him out of this little area.

There seems to be some references to the habitat in the behavior tree, and in the developer

visualization tools to habitat. It is possible that they created or were creating the ability for

Vector to recognize the habitat and adjust his behaviors. The bottom of the habitat is dark, but

with a thick white line around the perimeter near the edge. The line likely serves as a signal to

Vector to turn away before running into the edge, or to drive along. It may be detected by Vector’s

cliff sensors.

15. CUBE

The companion cube is a small toy for Vector play with. He can fetch it, roll it, and use it to pop-

wheelies. Each face of the cube has a unique optical marker used by Vector to identify the cube

and its pose (see Chapters 19 and 21).

4 RGB LEDs
Screw to remove panel

Lift point that Vector’s arm can

hook into

Removable panel, to

access battery

Although the companion cube is powered, this is not used for localization or pose. The electronics

are only used to flash lights for his human companion, and to detect when a person taps, moves the

cube or changes the orientation.

The cube has holes near the corners to allow the lift to engage, allowing Vector to lift the cube.

Not all corners have such holes. The top – the side with the multicolour LEDs – does not have

these. Vector is able to recognize the cubes orientation by symbols on each face, and to flip the

cube so that it can lift it.

The electronics in the cube are conventional for a small Bluetooth LE accessory:

Battery

4 RGB

LEDs

Accelerometer

DA14580
SPI /

I2C

VDD

P
W

M
 /

G
P

IO

Figure 23: Cube’s

main features

Figure 24: Block

diagram of the Cube’s

electronics

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 39

The Cube’s electronic design includes the following elements:

Element Description

accelerometer The accelerometer is used to detect movement and taps of the cube.

battery The cube is powered by a 1.5 volt N / E90 / LR1 battery cell.15

crystal The crystal provides the accurate frequency reference used by the Bluetooth LE radio.

Dialog DA14580 This is the Bluetooth LE module (transmitter/receiver, as well as microcontroller and protocol

implementation).

RGB LEDs There are 4 RGB LEDs. They can flash and blink. Unlike the backpack LEDs, two LEDs can

have independent colors.

The communication protocol is described in Chapter 14, and the GUIDs for the services and

characteristics are given in Appendix G.

15.1. OVER THE AIR APPLICATION FIRMWARE DOWNLOAD

The DA14580 has a minimal ROM boot loader that initializes hardware, moves a secondary boot

loader from “One Time Programmable” ROM (OTP) into SRAM, before passing control to it. The

firmware is executed from SRAM to reduce power consumption. The secondary boot-loader is

passed the application firmware from Vector over Bluetooth LE. This application is loaded into

SRAM and passed control.

15.2. REFERENCES & RESOURCES

Dialog, SmartBond™ DA14580 and DA14583

https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-

energy/smartbond-da14580-and-da14583

Dialog, DA14580 Low Power Bluetooth Smart SoC, v3.1, 2015 Jan 29

Dialog, UM-B-012 User manual DA14580/581/583 Creation of a secondary bootloader,

CFR0012-00 Rev 2, 2016 Aug 24

https://www.dialog-semiconductor.com/sites/default/files/um-b-

012_da14580_581_583_creation_of_a_secondary_boot_loader_v3.2.pdf

Dialog, Application note: DA1458x using SUOTA, AN-B-10, Rev 1, 2016-Dec-2

https://www.dialog-semiconductor.com/sites/default/files/an-b-

010_da14580_using_suota_0.pdf

15 The size is similar to the A23 battery, which will damage the cube’s electronics.

Table 8: The Cube’s

electronic design

elements

https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-energy/smartbond-da14580-and-da14583
https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-energy/smartbond-da14580-and-da14583
https://www.dialog-semiconductor.com/sites/default/files/um-b-012_da14580_581_583_creation_of_a_secondary_boot_loader_v3.2.pdf
https://www.dialog-semiconductor.com/sites/default/files/um-b-012_da14580_581_583_creation_of_a_secondary_boot_loader_v3.2.pdf
https://www.dialog-semiconductor.com/sites/default/files/an-b-010_da14580_using_suota_0.pdf
https://www.dialog-semiconductor.com/sites/default/files/an-b-010_da14580_using_suota_0.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 40

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 41

PART II

Basic Operation

This part provides an overview of Vector’s software design.

 THE SOFTWARE ARCHITECTURE. A detailed look at Vector’s overall software architecture and

main modules.

 STARTUP. A detailed look at Vector’s startup and shutdown processes

 POWER MANAGEMENT. A detailed look at Vector’s architecture for battery monitoring,

changing and other power management.

 BASIC INPUT AND OUTPUT. A look at push button, touch sensing, surface proximity sensors,

time of flight proximity sensing, and backpack LEDs.

 INERTIAL MOTION SENSING

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 42

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 43

CHAPTER 6

Architecture

This chapter describes Vector’s software architecture:

 The architecture

 The emotion-behaviour system

 The communication infrastructure

 Internal support

16. OVERVIEW OF VECTOR’S COMMUNICATION INFRASTRUCTURE

Vector’s architecture has a structure something like:

Inputs

Emotion

State

Engine

Behaviour

Engine

Behaviour results

Motors,

LEDs,

LCD,

Sound

Motion

trajectory

generator

Emotion state

Animations

Audio

Inputs
Trigger

Cloud

Servers

Intent /

frame

Video

Inputs

Fast control loops — to respond quickly — are done on the Vector’s hardware. Speech

recognition, natural language processing – very processing heavy items – are sent to the cloud.

Face recognition, and training for faces are not sent to the cloud.

Vector is built on a version of Yocto Linux. Anki selected this for a balance of reasons: some

form of Linux is required to use the Qualcomm processor, the low up front (and no royalty)

costs, the availability of tools and software modules. Qualcomm pushes the Android stack of tools

in particular for their processors. The Qualcomm is a multi-processor, with four main processing

cores and a GPU. Vector runs a handful of different application programs, in addition to the OS’s

foundational service tasks and processes.

Figure 25: The overall

functional block

diagram

explored in Casner,

and Wiltz

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 44

16.1. APPLICATION SERVICES ARCHITECTURE

Vector’s software is divided into the following services:

Vic-Robot

Body Board:

Motors, LEDs, touch,

Time of Flight &

surface proximity

sensors

Vic-dasmgr

(stats &

diagnostic data)

Mobile App

Cloud

Screen
Mobile App

& Python

SDK

applications

Cube

Camera

Vic-Spine

Vic-Cloud

(preferences,

audio for NLP)

Vic-Anim

IMU

Vic-Engine

Vic-Gateway

Vic-Switchbox

Vic-

crashuploader

anki-crash-log

Vic-webserver

These services are:

Services Speculated purpose

vic-anim This service plays multi-track animations (which include motions as well as

LCD display and sound)

config file: /anki/etc/config/platform_config.json

/anki/data/assets/cozmo_resources/ webserver/webServerConfig_anim.json

vic-bootAnim LCD and sound animations during boot.

vic-cloud This service connects to the cloud services for natural language services.

vic-crashuploader
anki-crash-log

A service that sends logs (especially crash logs and mini-dumps) to remote

servers for analysis.

vic-dasmgr Gathering data on processor and feature usage, servin as a foundation for

gathering data when performing experiments on settings and features.

vic-engine The vision system and behaviour / emotion engine. Hooks into the camera and

face recognizer.

vic-gateway Responsible for the local API/SDK services available as gRPC services on

https.

vic-robot Drives Vector along a path, and has all of the motor controls. It also includes

the sensor filtering to detect lift, fall, etc. as well as basic power management.

Internally has “vic-spine” that communicates with the body-board,and resets

the watchdog timers.

vic-switchboard Supports the Bluetooth LE communication interface, including the mobile

Figure 26: The overall

communication

infrastructure

Table 9: Vector

services & processes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 45

application protocol (see Chapter 13). Routes messages between the other

services? Manages the access keys

vic–webserver A developer-only tool that aids in visualizing the internal state of the software.

 Within the each vic- server processes, there are one or more event-driven communication threads.

A thread likely has the following basic structure:

Thread

Process event /

message

Block

Input

Messages

Message /

event

Dequeue

Message

Call

ThreadOutput

Messages

The communication threads have an input message queue. On Vector these include

 A socket, between processes

 A serial interface with the body board

 A web-socket

 Other, inter-thread message queue

The communication thread blocks on one or more message queue events. It wakes when there is

an incoming event/message, or there has been an error or timeout while waiting. When it wakes, it

dequeues the message, takes action and goes back to waiting. It may post messages (or other

signals) to other threads, possibly indirectly as a result of framework/library/system calls.

Within a server process, convenient C++ data structures are used. The vic- servers also use CLAD,

and JSON data structures, and include many helper procedures to convert between the two. It

appears that a process interprets and generates a JSON data structure. To communicate with

another process, it converts the JSON to a CLAD (since it is a contiguous span of bytes), sends that

to the other process; the other process reverses the process, converting it JSON and using that

interpret the message.

Figure 27: Basic

communication thread

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 46

16.2. EMOTION MODEL, BEHAVIOUR ENGINE, ACTIONS AND ANIMATION ENGINE

Vector’s high-level AI is organized around an emotion model, and a behaviour engine that drives

goals, responses and other actions.

Emotion

State

Engine

· Lift motors, Head angle,

· Driving

· Procedural Face

· Visual Animations

· Backpack LEDs

· Sound

Emotion state

Behaviour

Engine

Animation trigger

Select

animation

based on

mood

Animation

Animation

Engine

There are many similar terms used within Vector’s AI model, but there are subtle distinctions

between them:

· An AI Feature is the high level behaviors as a person would experience. There are about

70 of these. Note the name shouldn’t be confused with a feature flag or feature toggle;

that is a different concept, for software elements that are not ready yet, but included in the

code base.

· A behavior is “a complex task [that] may include combinations of animation, path

planning or other functionality. Examples include” driving to the charger, set the lift

height, etc. An AI Feature takes at least one behavior to carry out; it often takes many.

The current emotional state can influence which behavior is selected, and affect how it is

carried out. Intents (response to voice interaction) can initiate behaviors. Behaviors can

initiate actions.

· An action is like a mini-behavior, with some differences. Multiple actions can run at a

time – so long as they don’t use the same resources– but only one behavior can run at a

time. Actions can wait in a queue.

· An animation is a scripted motion, sound, light pattern, and/or facial animation (or picture

on the display) that Vector carries out. Behaviors and actions can initiate animations. The

animation engine selects the specific animation, from a pool of alternatives, based on

context and current emotional state. An animation can’t use the sensors, so it can’t adapt

to the environmental conditions. For instance, to drive up to a hand (or a cube) requires the

time of flight sensor; so an action is required.

Anki Vector SDK

Figure 28: The

behaviour-animation

flow

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 47

17. STORAGE SYSTEM

Vector’s system divides the storage into many regions, primarily based on whether the region is

modifiable (and when), and which subsystem manages the data. Appendix F describes the flash

partitions and file system structure. See chapter 7 for a description of the partitions used for

system start up and restore.

Most of the partitions on the flash storage are not modifiable – and are checked for authenticity

(and alteration). These partitions hold the software and assets as delivered by Anki (and

Qualcomm) for a particular release of the firmware. They are integrity checked as part of the start

procedure. (See Chapter 7 for a description.)

Data that is specific to the robot, such as settings, security information, logs, and user data (such as

pictures) are stored in modifiable partitions. Some of this data is erased when the unit is “reset” to

factory conditions

These are described below.

17.1. ELECTRONIC MEDICAL RECORD (EMR)

Vector’s “Electronic Medical Record” (EMR) partition holds the following information:

Offset Size Type Field Description

0 4 uint32_t ESN Vector’s electronic serial number (ESN). This

is the same serial number as printed on the

bottom of Vector. Serial numbers starting with

00e are engineering units.

4 4 uint32_t HW_VER Hardware revision code

8 4 uint32_t MODEL The model number of the product

12 4 uint32_t LOT_CODE The manufacturing lot code

16 4 uint32_t PLAYPEN_READY_FLAG The manufacturing fixture tests have passed; it

is ok to run play pen tests.

20 4 uint32_t PLAYPEN_PASSED_FLAG Whether or not Vector has passed the play pen

tests.

24 4 uint32_t PACKED_OUT_FLAG

28 4 uint32_t PACKED_OUT_DATE (In unix time?)

32 192 uint32_t[4] reserved

224 32 uint32_t[8] playpen

256 768 uint32_t[192] fixture

This information is not modified after manufacture; it persists after a device reset or wipe.

17.1.1 FAC (Factory) Mode

Vector has a “FAC” mode, used in the factory to test and calibrate the robot. When in FAC

mode, the display has a red background, with either the letters “FAC” or one two two digits

displayed (these are likely the testing stage to be performed), and his backpack lights have an

unusual color pattern – red, green, and blue.

This mode is never intended to be seen outside of the factory, so little is known. Only a couple

Table 10: Electronic

Medical Record (EMR)

Figure 29: The LED

pattern when in FAC

mode

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 48

of units have been found in this mode; one after it had been intentionally damaged, and its

calibration & EMR data were corrupted or inaccessible.16 In all likelihood, the software checks its

EMR to see if it has been released; if not, it enters the FAC mode at whatever the “next” stage is

according to the EMR. At that point Vector expects to be placed into manufacturing test fixtures,

such as the playpen.

17.1.2 Manufacturing Lot Codes

A manufacturing lot code is an identifier that used to track the components, and robot

subassemblies that were used in robots, as well as the date they were made. “If there's a problem

in a particular batch of components (or maybe the people working at the factory that day), we can

identify which robots were affected.”

“A lot code is 4 numbers. A typical lot code is 2 18 36 201.

 “2 is the factory. All Vectors were made at factory 2.”

 18 is the last two digits of the year, 2018.

 “36 means week 36 of 2018 - that's first week of September.

 “201 means ‘Standard Edition Vector, US-only version’”

The robots were made “in big batches in July/August, and they didn't start coming back [to

customer service] until January/February,” when Anki would “put the fixes into the next big batch

the upcoming year.”

17.1.3 Playpen Data

The playpen is a testing area with ramps, barriers, camera targets at a variety of angles, cube and a

charging station. Vector is put into one during manufacture to check his sensors, camera

calibration, motor function, microphone and a check over his overall functions. The playpen tests

involve many checks to ensure that his head is assembled and attached correctly, as wells that his

lower body is assembled correctly. These use almost of all of his functions: that he can correctly

navigate, detect cliffs, see and count dots, see markers (getting their type and size correct), dock,

and charge.

The images that Vector sees during these tests are kept with unit. This way, if the unit is returned

later with a vision-related problem, the images from the manufacturing are there to see if, as part of

the manufacturing record for analysis of returned products, “we can go back to those images and

see if it's a new problem or was always there.”

There is also a sound booth that checked that his speaker was working properly and did not exceed

limits.

16 https://forums.anki.com/t/any-one-know-what-error-code-50-is/40891

https://forums.anki.com/t/any-one-know-what-error-code-50-is/40891

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 49

17.2. OEM PARTITION FOR OWNER CERTIFICATES AND LOGS

The OEM partition is a read/writeable ext2 file-system. It is used to hold information from the

robots testing at the factory, and its cloud access certificates:

Folder Description

The top level holds the log files.

cloud Holds the SDK TLS certificate and signing keys. With newer

firmware, the folder may also hold some other calibration

information.

nvStorage Holds some binary “.nvdata” files

18. SECURITY AND PRIVACY

Vector’s design includes a well thought-out system to protect against disclosing (i.e. providing to

strangers) sensitive information, and allowing the operator to review and delete it at any time:

 Photographs taken by Vector are not sent to (nor stored in) a remote server. They are

stored in encrypted file system, and only provided to authenticated applications on the

local network. Each photograph can be individually deleted (via the mobile application).

 The image stream from Vector’s camera is not sent to a remote server. It is only provided

to authenticated applications on the local network.

 The data used to recognize faces17 and the names that Vector knows are not sent to (nor

stored in) a remote server. The information is stored in an encrypted file system. The list

of known faces (and their names) is only provided to authenticated applications on the

local network. Any facial recognition data not associated with a name is deleted when

Vector goes to sleep. Facial data associated with an individual name can be deleted (along

with the name) via the mobile application.

 “[After] you say the wake words, “Hey Vector”, Vector streams your voice command to

the cloud, where it is processed. Voice command audio is deleted after processing. Text

translations of commands are saved for product improvement not associated with a user.”

 The audio stream from the microphone — if it had been finished being implemented –

would have been provided to authenticated applications on the local network.

 Information about the owner can be erased using the Clear User Data menu option.

 Control of the robots movement, speech & sound, display, etc. is limited to authenticated

applications on the local network.

Vector’s software is protected from being altered in a way that would impair its ability to secure

the above. At the high level, this is done by requiring signed software files, and a signed file

system that is checked for alteration. The protections extend all the way to low-level electronics,

where the JTAG access fuses are blown, so that extracting or modifying RAM, flash or other data

can not be done. (Anki did this as a matter of standard operating procedure on all electronic

products.)

17 The Anki privacy and security documents logically imply that the face image is not sent to Anki servers to construct a recognition
pattern. There are no communication structures to send images to the cloud.

Table 11: OEM

partition file hierarchy

Anki Security &

Privacy Policy

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 50

Vector also indicates when it is doing something sensitive:

 When the microphone is actively listening, it is always indicated on the backpack lights

(blue).

 The microphone is enabled by default, but only listening for the wake word, unless

Vector’s microphone has been disabled.

 When the camera is taking a picture (to be saved), Vector makes a sound.

 When the camera is on?

 Unless the backpack lights are all orange, the WiFi is enabled. (All orange indicates it is

disabled.)

18.1. ENCRYPTED COMMUNICATION

The personally identifying information and other data about the owner — photos, account

information, WiFi passwords, and so one — is only sent on encrypted channels.

18.2. ENCRYPTED FILESYSTEM

The file system with the user’s data — photos, account information, WiFi passwords, and so one

— is encrypted. The encryption key is unique to each robot and not shared elsewhere.

18.3. THE OPERATING SYSTEM

There is a chain of firmware signed by Qualcomm and Anki. This is intended to protect Vector’s

software from being altered in a way that would impair its ability to secure the information above.

Android boot loaders typically include a few powerful (but unchecked) bits that disable the

signature checking, and other security features. These bits typically are set either thru commands

to the firmware during boot up, by applications, or possibly by hack/exploit. Sometimes this

requires disassembling the device and shorting some pins on the circuit board.

Vector doesn't support those bits, nor those commands. Signature checking of the boot loader,

kernel and RAM disk can't be turned off.

18.3.1 The possibility for future modifications to Vector’s software

Anki created special Vectors for internal development. The software for these units has a special

version of the kernel and RAM disk that does not check system room file system, and makes it

writable. This file system has Vector’s application software, supports SSH. This software was

tightly controlled, and “only .,. available inside the Anki corporate network.” For purposes of

customizing and updating Vector, this version is essential. (Note: the kernel and RAM disk can’t

be modified.)

Note: the OTA software has a “dev” (or development) set of OTA packages. Those packages are

not the same; they are essential software release candidates being pushed out for test purposes.

Jane Fraser, 2019

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 51

18.4. AUTHENTICATION

The web services built into Vector require a token. This is used to prove that you have

authenticated (with the more capable — and not physically accessible — servers). This

authentication is to protect:

 Photos already on Vector

 The image stream from the camera

 The audio stream from the microphone — if it had finished being implemented

 The sensitive owner information

 Controlling the robot

(That is to say, to prevent disclosure)

19. CONFIGURATION AND ASSET FILES

Vector’s software is configured by JSON files. Some of the JSON files were probably created by

a person (for the trivial ones). Others were created by scripting / development tools; a few of these

were edited by developers. These JSON files are clearly intended to be edited by people:

 The files are cleanly spaced, not in the most compact minimized size

 The JSON parser supports comments, which is not valid JSON. Many files have

comments in them. Many have sections of the configuration that are commented out.

19.1. CONFIGURATION FILES

The top-level configuration file provides the paths to the network other configuration files. It is

found at:

/anki/etc/config/platform_config.json

This path is hardcoded into the vic-dasmgr, and provided in the editable startup files for vic-anim

and vic-engine. The configuration file contains a JSON structure with the following fields:

Field Value Description & Notes

DataPlatformCachePath “/data/data/com.anki.victor/cache” This folder is used to hold logs and

diagnostic information until it can be

sent to the cloud servers.

DataPlatformPersistentPath “/data/data/com.anki.victor/persistent” This folder holds the settings for the

Vector application software.

DataPlatformResourcesPath “/anki/data/assets/cozmo_resources” The path to most configuration files and

assets

When describing the configuration and asset files, a full path will be provided. When the path is

constructed from different parts, the part that is specified in another configuration or binary file

will be outlined. The path to a settings file might look like:

/anki/assets/cozmo_resources/ config/engine/settings_config.json

The path leading up to the settings file (not outlined in red) is specified in an earlier configuration

file, usually the platform configuration file described above.

Table 12: The

platform config JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 52

20. SOFTWARE-HARDWARE LAYERS

 Body-board input/output software architecture

 The LCD display

 Camera

20.1. THE BODY BOARD INPUT/OUTPUT

The body-board input-output software has a structure like so:

SPI

RGB LEDs

UART

Analog In

Touch

Battery

Debounce

Button MotorMotorMotors

Body

board

Charger

Motor

Controllers

Motor

Controllers

Motor

Controllers

MotorMotorEncoders

Thermistor

Battery

Disconnect

Digital

Input
Digital

Output
I2C

Time of

Flight

MotorMotorMicrophones

Vic-anim

Vic-robot

20.2. THE LCD DISPLAY

Four different applications may access the display, albeit not at the same time:

LCD display
Frame buffer

/dev/fb0 SPI

vic-

bootAnim
vic-anim

displayFault

Code

vic-

faultDisplayCode

Note: displayFaultCode is present on Vector, but it is not called by any program.

The LCD is connected to the MPU via an SPI interface (/dev/spidev1.0). The frame buffer

(/dev/fb0) is essentially a buffer with metadata about its width, height, pixel format, and

orientation. Application modifies the frame buffer by write() or memmap() and modifies the bytes.

Then the frame buffer has the bytes transfer (via SPI) tot the display.

vic-anim employs a clever screen compositing system to create Vector’s face (his eyes), animate

text jumping and exploding, and small videos, such as rain or fireworks.

The vic-faultDisplayCode and Customer Care Information Screen of vic-anim have a visual

aesthetic is unlike the rest of Vector. These modes employ a barebones system for the display.

Figure 30: The body

board-related

architecture

Figure 31: The LCD

architecture

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 53

The text appears to rendered into the buffer using OpenCV’s putText() procedure, and transferring

it to the display without any further compositing.

Not sure if the transfer is in a driver, in the kernel, or in user space... or which process would have

it in user space.

20.3. THE CAMERA

The camera subsystem has the following architecture:

dev/socket/vic-engine-cam_client0

mm-anki-camera

Python SDK

applications
Vic-Gateway

Vic-engine
libcozmo_engine

libcameraService

Camera
MIPI

IMU

Vertical sync

The camera’s vertical synchronization signal is connect to the interrupt line on IMU, triggering

accelerometer and gyroscope sampling in sync with the camera frame. The vision is used as a

navigation aid, along with the IMU data. The two sources of information are fused together in

the navigation system (see chapter 19) to form a more accurate position and relative movement

measure. The image must be closely matched in time with the IMU samples. However the

transfer of the image from the camera to the processor, then thru several services to vic-engine

introduces variable or unpredictable delays. The camera’s vertical sync – an indication of when

the image is started being sampled – is used to trigger the IMU to take a sample at the same time.

The camera is also used as an ambient light sensor when Vector is in low power mode (e.g.

napping, or sleeping). In low power mode, the camera is suspended and not acquiring images.

Although in a low power state, it is still powered. The software reads the camera’s auto

exposure/gain settings and uses these as an ambient light sensor. (This allows it to detect when

there is activity and Vector should wake.)

21. REFERENCES & RESOURCES

Anki, Elemental Platform

https://anki.com/en-us/company/elemental-platform.html

Describes, as a marketing brochure, much of Anki’s product network architecture.

Anki, Vector Security & Privacy FAQs, 2018

https://support.anki.com/hc/en-us/articles/360007560234-Vector-Security-Privacy-FAQs

Casner, Daniel, Consumer Robots from Smartphone SoCs, Embedded Systems Conference Boston,

2019 May 15

https://schedule.esc-boston.com//session/consumer-robots-from-smartphone-socs/865645

Stein, Andrew; Kevin Yoon, Richard Alison Chaussee, Bradford Neuman, Kevin M.Karol, US

Patent US2019/01563A1, Custom Motion Trajectories for Robot Animation, Anki, filed 2018

Jul 13, published 2019 Apr 18,

Qualcomm, Snapdragon™ 410E (APQ8016E) r1034.2.1 Linux Embedded Software Release Notes,

LM80-P0337-5, Rev. C, 2018 Apr 10

lm80-p0337-

5_c_snapdragon_410e_apq8016e_r1034.2.1_linux_embedded_software_revc.pdf

Figure 32: The

camera architecture

Daniel Casner, 2019

Embedded Vision

Summit

https://anki.com/en-us/company/elemental-platform.html
https://support.anki.com/hc/en-us/articles/360007560234-Vector-Security-Privacy-FAQs
https://schedule.esc-boston.com/session/consumer-robots-from-smartphone-socs/865645

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 54

Tariq, Talha Securing Autonomous Robots at Scale, 2018 Oct 3

https://www.infosecuritynorthamerica.com/RXUK/RXUK_InfosecurityNorthAmerica/16.05-

16.30_Anki.pdf

Wiltz, Chris, Lessons After the Failure of Anki Robotics, Design News, 2019 May 21

https://www.designnews.com/electronics-test/lessons-after-failure-anki-

robotics/140103493460822

https://www.infosecuritynorthamerica.com/RXUK/RXUK_InfosecurityNorthAmerica/16.05-16.30_Anki.pdf
https://www.infosecuritynorthamerica.com/RXUK/RXUK_InfosecurityNorthAmerica/16.05-16.30_Anki.pdf
https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822
https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 55

CHAPTER 7

Startup

This chapter describes Vector’s start up and shutdown processes:

 The startup process

 The shutdown steps

22. STARTUP

Vector’s startup is based on the Android boot loader and Linux startup.18 These are otherwise not

relevant to Vector, and their documentation is referred to. The boot process gets quite far before

knowing why it booted up or being able to response in complex fashion.

1. The backpack button is pressed, or Vector is placed into the charger. This powers the body

board, and the head-board.

a. The body-board boot loader checks the application for validity, using a private key.

The application is run only if it passes the integrity checks.

2. The body-board displays an animation of the backpack LEDs while turning on.

a. If turned on from a button press and the button is released before the LED segments

are fully lit, the power will go off.

b. If the button is held down – for about 5 seconds – the head-board will have reach a

point in its boot process to direct the body-board to keep the battery switch closed.

c. If held for 15 seconds, the body-board will hold is TX line – the head-boards RX line

– low during the boot process. This tells the system to boot into recovery mode.

3. While the head-board boots, the body-board performs several self tests. These include

checking that the microcontroller can communicate with the 4 cliff (surface proximity)

sensors, and the time of flight sensor.

22.1. QUALCOMM’S PRIMARY AND SECONDARY BOOT-LOADER

Meanwhile, on the head-board:

1. “Qualcomm’s Primary Boot Loader is verified and loaded into [RAM] memory19 from

BootROM, a non-writable storage on the SoC. [The primary boot-loader] is then

executed and brings up a nominal amount of hardware,”

2. The primary boot-loader checks to see if a test point is shorted on the board, the unit will

go into emergency download (EDL) mode. It is known that when F_USB pad on the

head-board is pulled to Vcc, USB is enabled; this may be the relevant pin.

18 An ideal embedded system has a fast (seemingly instant) turn on. Vector’s startup isn’t fast. The steps to check the integrity of the

large flash storage – including checking the security signatures – and the complex processes that Linux provides each contribute to the

noticeable slow turn on time. Checking the signatures is inherently slow, by design.
19 The boot loader is placed into RAM for execution to defeat emulators.

Nolen Johnson

Roee Hay

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 56

3. If the primary-boot loader is not in EDL mode it “then verifies the signature of the next

boot-loader in the chain [the secondary boot-loader], loads it, [and] then executes it.”

The secondary boot-loader is stored in the flash partition SBL.

4. If the secondary boot-loader does not pass checks, the primary boot loader will go into

emergency down load mode.

5. “The next boot-loader(s) in the chain are SBL*/XBL (Qualcomm’s Secondary/eXtensible

Boot Loader). These early boot-loaders bring up core hardware like CPU cores, the MMU,

etc. They are also responsible for bringing up core processes .. [for] TrustZone. The last

purpose of SBL*/XBL is to verify the signature of, load, and execute aboot/ABL [Android

boot loader].”

The TrustZone firmware is signed and verified against the processor’s unique key.

The Android boot-loader (aboot) is stored on the “ABOOT” partition.

The secondary boot-loader also supports the Sahara protocol; it is not known how to

activate it.

Note: The keys for the boot-loaders and TrustZone are generated by Qualcomm, with the root

public key programmed into the hardware fuses before delivery to Anki or other customers.

(This is called the silicon-based hardware key, or SHK.) The signed key pair for the secondary

boot-loader, the TrustZone and for aboot are not necessarily the same signed key pair. They are

unique for each of Qualcomm’s customer. Being fuses, the SHK cannot be modified, even with

physical access. The SHK is only accessible to TrustZone firmware and its trustlets; keystores that

are encrypted and decrypted by the SHK must be to the TrustZone for processing.

22.2. ANDROID BOOT-LOADER (ABOOT)

1. “Aboot brings up most remaining core hardware then in turn normally verifies the signature

of the boot image, reports the verity status to Android Verified boot through dm-verity…

On many devices, Aboot/ABL can be configured to skip cryptographic signature checks and

allow booting any kernel/boot image.”

a. On other Android devices, aboot reads the DEVINFO partition for a structure. It

checks the header of the structure for a magic string (“ANDROID-BOOT!”) and

then uses the values within the structure to indicate whether or not the device is

unlocked, whether verity-mode is enabled or disabled, as well as a few other settings.

By writing a version of this structure to the partition, the device can be placed into

unlock mode.

Vector does not support this method of unlocking.

b. “The build system calculates the SHA256 hash of the raw boot.img and signs the

hash with the user’s private key… It then concatenates this signed hash value at the

end of raw boot.img to generate signed boot.img.”

c. “During bootup, [Aboot
20] strips out the raw boot.img and signed hash attached at the

end of the image. [Aboot] calculates the SHA256 hash of the complete raw boot.img

and compares it with the hash provided in the boot.img. If both hashes match, kernel

image is verified successfully.”

2. ABoot can either program the flash with software via boot loader mode, or load a kernel.

The kernel can be flagged to use a recovery RAM disk or mount a regular system.

20 The Qualcomm document speaks directly about Little Kernel; ABoot is based on Little Kernel.

Nolen Johnson

silicon-based

hardware key,

processor fuses

Roee Hay

Qualcomm LM80

P0436

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 57

3. If recovery mode, it will load the kernel and file systems from the RECOVERY partitions.

a. Recovery is entered if the active regular partition cannot be loaded, e.g. doesn’t

exist or fails signature check, or

b. The RX signal from the body-board may be held low when aboot starts,

indicating that the operator has held the button and wishes to initiate recovery

mode.21 If this is the case, “anki.unbrick=1” is prepended to the command line

passed to the kernel.

4. ABoot loads the kernel and RAM file system from the active “BOOT” partition and passes it

command line to perform a check of the boot and RAM file system the signatures.22 The

command line is stored in the header of the boot partition; it is checked as part of the

signature check of the boot partition and RAM file system. If the ABoot is compiled for a

developer robot, it will add an “anki.dev” to the command line.

Many of these elements will be revisited in Chapter 32 where updating aboot, boot, and system

partitions are discussed.

22.3. RECOVERY BOOT

The recovery system is, in part, based on an older version of Vector software.

USER DATA FILE SYSTEM. The recovery system does not use the user data file system. Here’s why:

1. The recovery system is risk averse. It is not updated (due to the risk), and has older

software. This software likely has bugs that could be a path for exploitation. By not using

the user data, the user data is protected against these exploits.

2. The user data may be corrupted, erased or gone. This may be the reason that the system in

recovery mode.

3. The files and formats of the user data, and the TrustZone key blobs may have changed with

newer formats and files. The recovery system might not be able to read them. Or it may

not be able to write something that the regular system can write.

FACTORY FILE SYSTEM. The recovery system normally mounts the factory file system (OEM

partition) in read only mode. It can be put into a “factory mode” (FAC) that remounts this file

system as a modifiable.

22.4. REGULAR SYSTEM BOOT

The boot partition holds the linux kernel, and a small RAM disk to initialize the system. It is

passed parameters on the command line from aboot and from the boot.img. The purpose of the

extra (Anki-specific) command line parameters are:

Field Description

anki.unbrick This is used to trigger a boot into recovery mode.

anki.dev This is set to confirm (to the linux system) that this robot is a development

robot and can run development software systems.

dm= The dm-verity command line used to verify the system file system

21 The body-board may body-board a resets/restarts the head-board so that the bootloader runs again.
22 The check specifies the blocks on the storage to perform a SHA256 check over and provides expected signature result.

Table 13: linux

command line

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 58

After the kernel has finished loading, it launches init. In Vector, it is a shell script with Anki-

specific system checks:

Launch OS on

main partition

Command

line has

“anki.dev”?

Yes

No

No

Tell RAMPOST

to cut power
Set up dm-verity

Command

line has

“dm=”?

Perform

RAMPOST

check of system

controller

aboot

Exit, halting

head board

Yes

These Anki-specific system steps are:

1. The RAM file system contains primarily of two programs: init and /bin/rampost. init is a

shell script and the first program launched by the kernel. This script turns on the LCD, its

backlight and initiate communication with the body-board. (These occur ~6.7 seconds

after power-on is initiated).

a. rampost initializes the LCD, clearing the display. It also shows a start up screen on

the display of developer units.

b. rampost will perform a firmware upgrade of the body-board if its version is out of

date. It loads the firmware from syscon.dfu (Note: the firmware in the body-board is

referred to as syscon.)

c. rampost checks the battery voltage, temperature and error flags. It posts any issues to

/dev/rampost_error. See Appendix D Table 605: RAMPOST DFU status codes for

DFU related error codes.

d. All messages from rampost are prefixed with “@rampost.”

2. Next, init performs a signature check of the system partition to ensure integrity. This is

triggered by the command line which includes dm-verity options prefixed with “dm=”. If

the system does not pass checks, init fails and exits.

a. Note: none of the file systems in fstab marked for verity checking, so this is the only

place where it is performed.

Figure 33: The linux

boot-partition init-script

flow

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 59

3. The main system file-system is mounted and launches the main system initialization.

The regular boot uses systemd to allow of the startup steps to be performed in parallel. The rough

start up sequence is:

1. Starts the Qualcomm Secure Execution Environment Communicator (dev-qseecom.device)

and ION memory allocator (dev-ion.device)

2. The encrypted user file system is checked and mounted (via the mount-data service). This

file system is where the all of the logs, people’s faces, and other information specific to the

individual Vector are stored. The keys to this file system are stored in a blob within

“switchboard” but are encoded and decoded by a TrustZone key manager (which uses the

processor’s secret key). This file system can only be read by the MPU that created it.

a. If “anki.unbrick” is on the command line, the user data partition is not touched;

instead a temporary file system is created and used instead.23 This flag is not

meaningful in the regular system since the boot-loader will only launch the recovery

partition software with “anki.unbrick”

b. If the data partition is empty (i.e., erased to clear the user data), the user data

partitions is formatted;

3. The MPU’s clock rate is limited to 533Mhz, and the RAM is limited to 400MHz to prevent

overheating.

4. The camera power is enabled

5. If Vector doesn’t have a robot name, Vic-christen is called to give it one.

6. After that several mid-layer communication stacks are started:

a. usb-service any time after that

b. the WiFi connection manager (connman)

c. The time client (chronyd), to retrieve network time. (Vector does not have a clock

that keeps time when turned off)

d. init-debuggerd

7. multi-user, sound, init_post_boot

8. The “Victor Boot Animator” is started (~8 seconds after power on) and shows the sparks

turning into the “V” splash screen on the display.

9. Victor Boot completes ~20.5 after power on, and the post boot services launches

10. The vic-crashuploader service is started to gather crash logs and dump files, some of which

may have been created during a previous boot attempt. These will be uploaded when

internet access is restored.

11. The vic-robot and main robot services are started.

12. Once the startup has sufficiently brought up enough the next set of animations the sound of

boot

23 I’m not sure how this would be useful as is with the regular system software. It seems like Vector could boot up, appear like

everything is wiped, and needs to be re-set up… then some time later, Vector would reboot, and appear to be his previous self –
including any misconfiguration that motivated the unbrick the first time.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 60

13. VicOS is running ~32 seconds after power on. The boot is complete, and Vector is ready

to play

22.5. ABNORMAL SYSTEM BOOT

If there is a problem during startup – such as one of the services is unable to successfully start, a

fault code associated with that service is stored in /run/fault_code and the fault code displayed.

See chapter 33 for a description of the display of fault codes and diagnostics. See Appendix D for

fault codes.

22.6. REGULAR REBOOTS

Vector reboots nightly (if left on) and checks for software updates. See chapter 32 for information.

23. REFERENCES & RESOURCES

Android, Verified Boot

https://source.android.com/security/verifiedboot/

Bhat, Akshay; Secure boot on Snapdragon 410¸TimeSys, 2018 Aug 23

https://www.timesys.com/security/secure-boot-snapdragon-410/

Discusses how one can get the source to the secondary boot-loader (SBL), the tools to sign it

and aboot using sectools

https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

Hay, Roee. fastboot oem vuln: Android Bootloader Vulnerabilities in Vendor Customizations,

Aleph Research, HCL Technologies, 2017

https://www.usenix.org/system/files/conference/woot17/woot17-paper-hay.pdf

Hay, Roee; Noam Hadad. Exploiting Qualcomm EDL Programmers, 2018 Jan 22

Part 1: Gaining Access & PBL Internals

https://alephsecurity.com/2018/01/22/qualcomm-edl-1/

Part 2: Storage-based Attacks & Rooting

https://alephsecurity.com/2018/01/22/qualcomm-edl-2/

Part 3: Memory-based Attacks & PBL Extraction

https://alephsecurity.com/2018/01/22/qualcomm-edl-3/

Part 4: Runtime Debugger

https://alephsecurity.com/2018/01/22/qualcomm-edl-4/

Part 5: Breaking Nokia 6's Secure Boot

https://alephsecurity.com/2018/01/22/qualcomm-edl-5/

Johnson, Nolen; Qualcomm’s Chain of Trust, Lineage OS, 2018 Sept 17

https://lineageos.org/engineering/Qualcomm-Firmware/

A good overview of Qualcomm’s boot loader, boot process, and differences between versions

of Qualcomm’s process. Quotes are slightly edited for grammar.

Nakamoto, Ryan; Secure Boot and Image Authentication, Qualcomm , 2016 Oct

https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-

technical-overview-v1-0.pdf

Qualcomm, DragonBoard™ 410c based on Qualcomm® Snapdragon™ 410E processor Little

Kernel Boot Loader Overview, LM80-P0436-1, Rev D, 2016 Jul

lm80-p0436-1_little_kernel_boot_loader_overview.pdf

https://github.com/ alephsecurity

A set repositories researching tools to discover commands in Sahara and EDL protocols

https://github.com/openpst

A set of repositories researching and implementing an interface to the Sahara protocol.

https://source.android.com/security/verifiedboot/
https://www.timesys.com/security/secure-boot-snapdragon-410/
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
https://www.usenix.org/system/files/conference/woot17/woot17-paper-hay.pdf
https://alephsecurity.com/2018/01/22/qualcomm-edl-1/
https://alephsecurity.com/2018/01/22/qualcomm-edl-2/
https://alephsecurity.com/2018/01/22/qualcomm-edl-3/
https://alephsecurity.com/2018/01/22/qualcomm-edl-4/
https://alephsecurity.com/2018/01/22/qualcomm-edl-5/
https://lineageos.org/engineering/Qualcomm-Firmware/
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v1-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v1-0.pdf
https://github.com/%20alephsecurity
https://github.com/openpst

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 61

CHAPTER 8

Power management

This chapter describes Vector’s power management:

 The battery management

 Load shedding

 Charger info

24. POWER MANAGEMENT

24.1. BATTERY MANAGEMENT

Vector does not employ a coulomb counter to track the remaining energy in the battery. The

batteries had too much variation to allow the capacity tracking to work well. At the broadest

strokes, the battery voltage is used to predict the battery state of charge.

24.1.1 Battery levels

Vector maps the battery voltage into a battery level, taking into account whether or not the charger

is active:

Battery

Level is

unknown

BatteryLevel

Battery Voltage

Yes

Apply charger

thresholds for

each level

On Charger?

Apply normal

thresholds for

each level

No

Battery

Connected?

Yes

No

Filter battery

voltage

Figure 34: The battery

level classification tree

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 62

Note: The battery voltage is filtered – the voltage will bounce around with activity by the motors,

driving the speaker and processors.

The BatteryLevel enumeration is used to categorize the condition of the Vector battery:

Name Value Description

BATTERY_LEVEL_FULL 3 Vector’s battery is at least 4.1V

BATTERY_LEVEL_LOW 1 Vector’s battery is 3.6V or less; or if Vector is on the

charger, the battery voltage is 4V or less.

BATTERY_LEVEL_NOMINAL 2 Vector’s battery level is between low and full.

BATTERY_LEVEL_UNKNOWN 0 If the battery is not connected, Vector can’t measure its

battery.

The battery levels are organized conventionally:

BATTERY_LEVEL_FULL

Any voltage at or above this threshold is

considered as a full battery

At and below this voltage, Vector begins seeking home

to charge

~3.6v BATTERY_LEVEL_LOW

Any voltage at or below this threshold triggers an

immediate battery disconnect, turning the system off

At and below this voltage, Vector performs a clean

shutdown, disabling motors, WiFi, the LCD display,

camera, etc.

4.2v

BATTERY_LEVEL_NOMINAL

When the voltage is in the range, Vector doesn’t

automatically seek the home (charger) or shutdown.

4.1v

The current battery level and voltage can be requested with the Battery State command (see

Chapter 15, section 51.2 Battery State). The response will provide the current battery voltage, and

interpreted level.

24.1.2 A software “fuel gauge”

It is typical for larger battery packs to include a coulomb counter, often called a fuel gauge. They

include it for a serious reason: it prevents fire and explosions that can result from overcharging a

large multi-cell pack. The fancy “fuel gauge” and estimated useful life is a bonus.

For Vector, a fuel gauge would given him smarts about knowing he will need to plan to return

home, or is getting low. His hardware doesn’t have a coulomb counter, for a variety of reasons.

Any effort, beyond simple battery voltage, to estimate the remaining play time would have to be

based on software and tracking the battery performance.

24.2. RESPONSES, SHEDDING LOAD / POWER SAVING EFFORTS

Vector’s main (power-related) activity modes are:

 active, interacting with others

 calm, where primarily sitting still, waiting for assistance or stimulation

24 The levels are from robot.py

Table 14:

BatteryLevel codes
24

as they apply to

Vector

Figure 35: The battery

thresholds

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 63

 sleeping

Depending on the state of the battery – and charging – Vector may engage in behaviours that

override others.

BatteryLevel

Level too low?

No

Yes

Level low

enough to seek

charger?

Queue high

priority task to

seek charger

Disconnect

battery

No
Done

Yes

Stuck?
Yes

Low power mode,

cry for help

No

If his power is low, Vector will launch a behavior to seek the charger out, and recharge. If he is

stuck, his behaviors will have him cry out.

If Vector is unable to dock (or even locate a dock) he sheds load as he goes into a lower state:

 He no longer responds to his trigger word or communicates with WiFi servers

 He turns off camera and LCD; presumable the time of flight sensor as well.

 He reduces processing on the processor

 Eventually the power will be turned off completely.

24.2.1 Temperature limits and related processing

The software tracks the temperature of the battery and head. As the temperature rises, more

aggressive actions are taken to protect the battery and let the chips cool down.

 Around 90C, Vector displays the overheating icon.

 If the body board is overheated, a flag in the HTTPS API RobotStatus bit mask is set (see

Chapter 15, section 44.1.2 RobotStatus Note: this is speculated, not proven.

 At some point past 90C, Vector starts a clean shut down (see earlier). The software in the

head is idle, and turns off as many peripherals (e.g. WiFi, display, etc.) with “the goal to

save enough power in the head to let the chip cool off, so we could continue driving

home.”

 If the APQ8009 processor is hot, it will throttle its clocks. If the MP2617B charging chip

is reaching the thermal limits related to charging, it will throttle the charging.

Figure 36: The

response to battery

level

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 64

 If either the body or head board exceeds a maximum temperature, the system is completely

shut down, and power is cut.

The battery overheated icon is displayed by vic-faultCodeDisplay, which has a hard coded path to

the icon:

/anki/data/assets/cozmo_resources/config/devOnlySprites/independentSprites/battery_o

verheated.png

Version 1.6 uses very conservative thresholds (to protect the battery) with the intention of follow

up releases fine tuning the thresholds.

24.2.2 Calm Power mode

Vector has a high-level power mode called “calm power mode.” This mode “is generally when

Vector is sleeping or charging.” Vector [probably] turns off the sensors, lowers the CPU and

camera clock rate – or may even suspend the camera. (See Chapter 19, section 79.5 Illumination

level sensing for a description).

Whether Vector is in calm power mode (or not) is reported in the RobotStatus message in the status

field. (See chapter 15 for details.) Vector is in a calm power model if the

ROBOT_STATUS_CALM_POWER_MODE bit is set (in the status value).

24.2.3 When not moving

When Vector isn’t driving (or using his head and lift), he puts his motors and related sensors into a

low power state:

 The encoders are mostly turned off; they “pulsed at 1% duty cycle and watched for

changes” to detect someone moving Vector around;

 The time of flight sensor is turned to a lower sampling period

24.3. SLEEP STATES

Vector has variety of sleep states, based on his power level, what he can potentially do, and where

he is at. These include:

 Comatose

 Deep sleep

 Emergency sleep

 Asleep, but held in palm

 Asleep, on palm

 Asleep on charger

 Light sleep

24.3.1 Sleep Debt

Vector “has a “sleep debt” system to make him get sleepier if he's been on longer as a way of

keeping the battery and electronics from overheating (it heats up with a lot of use, but after a few

seconds of sleeping can throttle down).”

Internally Vector tracks this as an amount of time he needs to sleep (sleep_debt_hours, a floating

point number). This increments with activity (and charging), and decrements (at a different rate)

when sleeping.

Brad Neuman

reddit post

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 65

24.4. ACTIVITY LEVEL MANAGEMENT

Version 1.5 slowed down a lot of Vectors activities (by lowering his max clock rate), to reduce

heat (prolonging the battery service life) and allow him to play longer between charge cycles.

Some of his behaviors were modified so that he doesn’t initiate exploring and playing as much,

choosing instead to stay on the charger longer until there was more signs that people were around

to play.

Version 1.6 may have gone further.

Behaviors are responsible for requesting that Vector enter a power saving or other sleep state.

24.5. SHUTDOWN

 Turning Vector off manually

 Vector turning off spontaneously due to brown-out or significant loss of power

 Vector turning off (under low power) by direction of the head-board

 Vector turning off if key software crashes

Vector cannot be turned off via Bluetooth LE, or the local HTTPS SDK access. There are no

exposed commands that do this. Using a verbal command, like “turn off” does not direct Vector to

shut off (disconnect the battery). Instead it goes into a quiet mode. Although it may be possible

for a Cloud command to turn Vector off, this seems unlikely.

However, there is likely a command to automate the manufacture and preparation for ship process.

24.5.1 Turning Vector Off (intentionally)

When the system decides it needs to shutdown, it internally posts one of the following codes as the

reason for shutdown:

Name Value Description& Notes

SHUTDOWN_BATTERY_CRITICAL_TEMP 3 Vector shut down automatically because the battery

temperature was too high.

SHUTDOWN_BATTERY_CRITICAL_VOLT 2 Vector shut down automatically because the battery

voltage was too low.

SHUTDOWN_BUTTON 1 Vector was shut down by a long button press.

SHUTDOWN_GYRO_NOT_CALIBRATING 4 Vector shut down automatically because of an IMU

problem.

SHUTDOWN_UNKNOWN 0 Vector shut down unexpectedly; the reason is not

known. Likely a brown-out or battery voltage dipped

low faster than Vector could respond to.

The shutdown code is logged, and broadcast but not otherwise stored.

24.5.2 Unintentionally

The body-board is responsible for keeping the battery connected. However brownouts, self-

protects when the voltage get to too low, and bugs can cause the battery to be disconnected. The

body board will turn off power if it doesn’t hear from the head-board in a regular fashion. This

could be because of software crash.

Table 15: Vector

shutdown codes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 66

24.5.3 Going into an off state

When Vector wants to intentionally turn off, it cleans up its state to gracefully shutdown the linux

system and tells the body-board to disconnect the battery.

24.6. THE CUBE POWER MANAGEMENT

Vector manages the Cube’s power usage by managing the link. Vector disconnects from the cube

(saving the most power) when sleeping, or the cube is not used by the behavior tree. When

connected to the cube, higher and lower update rates are selected, based on the active behavior and

the kind of interaction. Since higher update rates consume more power, Vector only employs them

if there is an indication that someone is moving or tapping the cube. Lower update rates are used

to detect the possibility of interaction, such as motion. See chapter 14 for more information.

25. CHARGING

Vector tracks whether is charging is in process, and how long. The software has some initial

estimates how long before charging is complete. This is similar to the software “fuel gauge.” It

takes some model of the batteries capacity, and typical charging times given that.

The state of the charger is reported in the RobotStatus message in the status field. (See chapter 15

for details.) Vector is on the charger if the ROBOT_STATUS_IS_ON_CHARGER bit is set (in the status

value), and charging if the ROBOT_STATUS_IS_CHARGING bit is set.

Version 1.5 slowed down the charging, to reduce heat, prolonging the battery life.

Additional information about the state of the charger can be requested with the Battery State

command (see Chapter 15, section 51.2 Battery State). The response will provide flags indicating

whether or not Vector is on the charger, and if it is charging. The response also provides a

suggested amount of time to charge the batteries.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 67

CHAPTER 9

Basic Inputs and

Outputs

This chapter describes Vectors most basic input and output: his button, touch and LEDs:

 Touch and button input

 Backpack Lights control

Note: the audio sampling will be covered in a later chapter (Chapter 18)

26. BUTTON, TOUCH AND CLIFF SENSOR INPUT

Vector’s backpack button is used to wake (and silence) Vector, or to place him into recovery mode.

Touch is used to pet Vector and provide him stimulation. Four surface proximity IR sensors are

used to detect cliffs and line edges. The responsibility for the button, touch, and proximity sensor

input functions are divided across multiple processes and boards in Vector:

Surface

Proximity

Sensors

Surface

Proximity

Sensors

UART

Body-Board

Python SDK

applications
Vic-Gateway

Touch

Vic-Robot

Vic-Spine

ADC

Button
GPIO

Surface

Proximity

Sensors

Time of

Flight I
2
C

The states of the inputs (button, touch, surface proximity and time of flight sensors) are reported in

the RobotStatus message. (See chapter 15 for details.) The button state can be found in the status

field. The button is pressed if the ROBOT_STATUS_IS_BUTTON_PRESSED bit is set (in the status

value).

The surface proximity sensors (aka “cliff sensors”) are used to determine if there is a cliff, or

potentially in the air. The individual sensor values are not accessible. The cliff detection state

can be found in the status field. A cliff is presently detected if the

ROBOT_STATUS_CLIFF_DETECTED bit is set (in the status value).

Figure 37: The touch

and button input

architecture

cliff sensors

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 68

26.1. TOUCH SENSING INFORMATION

The touch sensor is driven by the body-board, and the sample values are processed in the head-

board. The sensors samples are filtered, to get a sense of the current “level” the sensor is at. A

standard deviation is used as a measure of how solid the signal, to help distinguish between a real

signal and ambient conditions like humidity and weather. These two measures – along with a

timer to screen out transitory noise – can be used to decide that Vector is being touched or not.

Threshold &

Timer

Touch

Sensor
Filtering

These measures could potentially distinguish between light touch (e.g. tip of the finger), heavy

touch (e.g. a full palm?), and perhaps even changing touch.

The touch sensor readings can be found in the touch_data field of the RobotStatus message. The

values indicate whether Vector is being touched (e.g. petted).

The touch sensor module produces a JSON structure for internal use:

Field Type Units Description

max float The maximum value seen

min float The minimum value seen

stddev float The standard deviation

26.2. TIME OF FLIGHT PROXIMITY SENSOR

The time of flight reading is given in the prox_data field. This indicates whether there is a valid

measurement, the distance to the object, and a metric that indicates how good the distance

measurement is. This will be processed by the mapping system. See Chapter 20 section 89

Measuring the distance to objects.

27. BACKPACK LIGHTS CONTROL

The backpack lights are used to show the state of the microphone, charging, WiFi and some other

behaviours. (It is also used to show unusual error states.)

UART

Body-Board

Vic-anim

LEDs

Vic-Robot

Vic-Spine

SPI-like

The software can direct the body-board to illuminate the backpack lights with individually

different colors and brightness’s. The body-board “pulse width modulates” (PWM’s) the LEDs to

achieve different colors and intensities.

Figure 38: The touch

sensor and petting

detector

Table 16: Touch sensor

structure

Figure 39: The

backpack lights output

architecture

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 69

The body-board doesn’t directly interface with the LED’s (they’re connected to a logic chip on a

separate board), so it cannot delegate the work to an internal PWM peripheral. The body-board

must implement its PWM in firmware, and send the GPIO states to the backpack every time there

is a change. (See Chapter 4, section 10.3.1 The LED controls)

PWM1

PWM4

PWM3

PWM2

74AHC164
Octet

The basic logic to drive the LEDs is:

1. Select LEDs for the time slice

2. Get the LED bit settings from the PWM(s)

3. Organize these into a format for the 74AHC164

4. Send the bits to the 74AHC164

5. Delay until the next time slice, and repeat

Figure 40: The

firmware driving of the

LEDs

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 70

CHAPTER 10

Inertial Motion

Sensing

This chapter describes Vector’s motion sensing:

 Sensing motion and cliffs

 Detecting external events

 Measuring motion as feedback to motion control, and allow moving along paths in a

smooth and controlled fashion

28. MOTION SENSING

Vector employs an IMU – an accelerometer and gyroscope in the same module – to detect motion,

such as falling or being bumped, as well as measuring the results of motor-driven motions.

IMU IMU Filter

Pick Up / In-

Air Detector

Cliff

Sensors

Poke

Detector

Being Held

Detector

Fall

Detector

Fist-Bump

Detector

28.1. ACCELEROMETER AND GYROSCOPE

Neither the accelerometer nor gyroscope by itself is sufficient to accurately measure change in

position and orientation. Accelerometers measure force along 3 (XYZ) axes, including gravity.

The accelerometer provides the orientation – if there is no other motion. The drawback is that

accelerometers cannot correctly measure spins, and other rotations from other movements.

Gyroscopes can measure rotations around the axes, but cannot measure linear motion along the

axis. Gyroscopes also have a slight bias in the signal that they measure, giving the false signal that

there is always some motion occurring.

By blending the accelerometer and gyroscope signals together, they can compensate and cancel

each other’s weaknesses out.

Figure 41: Sensing

motion events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 71

Acelerometer
Low pass

filter

Angular

Velocity

Gyroscope
High pass

filter

Displacement

Numerical

integration

Numerical

integration

High pass

filter

Angle

28.2. TILTED HEAD

The IMU can also measure how tilted Vector’s head is. The IMU is located in Vector’s head. This

presents a small extra step of processing for the software to accommodate the impact of the head.

By combining the position & orientation of the IMU within the head, the current estimated angle of

the head, the known joint that the head swivels on, and working backwards the IMU measures can

be translated to body-centered measures.

28.3. SENSING MOTION

The IMU’s primary function is detect motion – to help estimate the change in position, and

changes in orientation of Vector’s body, and how fast it is moving.

The IMU can be used to detect the angle of Vector’s body. This is important, as the charging

behaviour uses the tilt of the charging station ramp to know that it is in the right place.

28.4. SENSING INTERACTIONS

The IMU (with some help from the cliff sensors) is also used to sense interactions and other

environmental events – such as being picked up or held by a person, being poked or given a fist

bump, or falling.

Acelerometer

Gyroscope

ClassifierFilter bank
Low pass

filter
Filter bank

Filter bank
Low pass

filter
Filter bank

By using combinations of high, low pass, and band filters, and looking for signature patterns,

Vector identify the kinds of physical interactions that are occurring.

The taps and pokes may tilt Vector, but will also provide a “frequency” response to the signals that

can be used to trigger on. The movement will change his position quickly and slight in small

distance, but Vector will resume his prior position very quickly.

Fist-bumps are like pokes, except that the lift has already been raised, and most of the frequency

response and motion will be predictable from receiving the bump on the lift.

Figure 42:

Complementary

filtering of the

accelerometer and

gyroscope

Figure 43: Classify

movement by filtering

the accelerometer and

gyroscope signals

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 72

Fall detection is similar. In free-fall, the force measured by the accelerometer gets very small. If

Vector is tumbling, there is a lot of angular velocity that is taking Vector off of his driving surface.

Being picked up is distinct because of the direction of acceleration and previous orientation of

Vector’s body.

Being held is sensed, in part by first being picked up, and by motions that indicate it is not on a

solid surface.

A similar set of interaction sensing is present with the cube. It can sense that it is being tapped (or

double tapped), picked up, and held. See Chapter 21.

Patent filings (e.g. WO 2019/173321 indicates that Anki had ideas of how this could be extended

to detect riding in a car, and even estimating how fast it is moving.

29. REFERENCES AND RESOURCES

AdaFruit, https://github.com/adafruit/Adafruit_9DOF/blob/master/Adafruit_9DOF.cpp

An example of how accelerometer and gyroscope measurements are fused.

Anderson, Ross Robot Transportation Mode Classification, Anki, WIPO WO 2019/173321 A1,

2019 Sept 12

https://github.com/adafruit/Adafruit_9DOF/blob/master/Adafruit_9DOF.cpp

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 73

PART III

Communication

This part provides details of Vector’s communication protocols. These chapters describe structure

communication, the information that is exchange, its encoding, and the sequences needed to

accomplish tasks. Other chapters will delve into the functional design that the communication

provides interface to.

 COMMUNICATION. A look at Vector’s communication stack.

 COMMUNICATION WITH THE BODY-BOARD. The protocol that the body-board responds to.

 VECTOR’S BLUETOOTH LE COMMUNICATION PROTOCOL. The Bluetooth LE protocol that

Vector responds to.

 CUBE’S BLUETOOTH LE COMMUNICATION PROTOCOL. The Bluetooth LE protocol that the

companion cube responds to.

 SDK PROTOCOL. The HTTPS protocol that Vector responds to.

 WEB-VISUALIZATION PROTOCOL. The web-sockets protocol(s) that Vector provides for

debugging in development builds.

 CLOUD. A look at how Vector interacts with remote services

drawing by Jesse Easley

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 74

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 75

CHAPTER 11

Communication

This chapter describes the system of communication system with the devices internal and external

to Vector:

 Internal communication with the body-board, and internal peripherals

 Bluetooth LE: with the Cube, and with the application

 WiFi: with the cloud, and with the application

 Internal support

30. OVERVIEW OF VECTOR’S COMMUNICATION INFRASTRUCTURE

A significant part of Vector’s software is focused on communication:

 Internal IPC between processes

 Communication with local peripherals and the body-board processor

 Communication with external accessories and applications.

From a high-level, the communication stacks look like:

LCD

IMU

Body Board:

Motors, LEDs

& sensors

Application

Mobile App

Cloud

Serial

Console
Wifi Stack

Python SDK

applications
Bluetooth

stack

Cube

USB
Offboard Vision

Engine

Figure 44: The overall

communication

infrastructure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 76

31. INTERNAL COMMUNICATION WITH PERIPHERALS

The communication stack within the software is one part Linux, one part Qualcomm, and a big

heaping dose of Anki’s stuff.

31.1. COMMUNICATION WITH THE BODY-BOARD

The head board communicates with the body board using a serial interface. The device file is

/dev/ttyHS0.

31.2. SERIAL BOOT CONSOLE

The head-board employs a serial port to display kernel boot up and log messages. The

parameters are 115200 bits/sec, 8 data bits no parity, 1 stop bit; the device file is /dev/ttyHSL0.

This serial port is not bi-directional, and can not be used to login.

31.3. USB

There are pins for USB on the head board. Asserting “F_USB” pad to VCC enables the port.

During power-on, and initial boot it is a Qualcomm QDL port. The USB supports a Qualcomm

debugging driver (QDL), but the readout is locked. It appears to be intended to inject software

during manufacture.

The /etc/initscriptsusb file enables the USB and the usual functionfs adb. It lives in

/sbin/usr/composition/9091 (I think, if I understand the part number matching correctly). This

launches ADB (DIAG + MODEM + QMI_RMNET + ADB)

Vectors log shows the USB being disabled 24 seconds after linux starts. It is enabled only on

development units.

32. BLUETOOTH LE

Bluetooth LE is used for two purposes:

1. Bluetooth LE is used to initially configure Vector, to reconfigure him when the WiFi

changes; and to pair him to with the companion cube accessory. Potentially allows some

diagnostic and customization.

2. Bluetooth LE is used to communicate with the companion Cube: to detect its movement,

taps, and to set the state of its LEDs.

Melanie T

Melanie T

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 77

Vector’s Bluetooth LE stack looks like:

Bluez

/data/misc/bluetooth/abtd.socket

ankibluethd

Cube library

libcubeBleClient

Qualcomm

Bluetooth LE

libanki-ble

Vic-

Switchboard

/data/misc/bluetooth/btprop

The elements of the Bluetooth LE stack include:

Element Description & Notes

ankibluetoothd A server daemon. The application layer communicates with it

over a socket;
/data/misc/bluetooth/abtd.socket

BlueZ Linux’s official Bluetooth stack, including Bluetooth LE support.

The Anki Bluetooth daemon interacts with it over a socket:
/data/misc/bluetooth/btprop

bccmd A Bluetooth core command

btmon A command-line Bluetooth tool

libanki-ble.so Communicates with Anki Bluetooth daemon probably serves both

the external mobile application interface and communication with

the companion cube.

libcubeBleClient.so25 A library to communicate with the companion cube, play

animations on its LEDs, detect being held, taps and the cube’s

orientation.

viccubetool Probably used to update the firmware in the Cube.

25 The library includes a great deal of built in knowledge of the state of application (“game engine”), animations, and other elements

Figure 45: The

Bluetooth LE stack

Table 17: Elements of

the Bluetooth LE stack

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 78

33. WIFI

WiFi networking is used by Vector for six purposes:

1. WiFi is used to provide the access to the remote servers for Vector’s speech recognition,

natural language processing

2. WiFi is used to provide the access to the remote servers for software updates, and

providing diagnostic logging and troubleshooting information to Anki

3. To provide time services to so that Vector knows the current time

4. To provide an interface, on the local network, that the mobile application can use to

configure Vector, and change his settings.

5. To provide an interface, on the local network, that SDK applications can use to program

Vector.

6. To provide interfaces, on the local network, that allow development Vectors (special

internal versions) to be debugged and characterized

The WiFi network stack looks like:

Connman

Avahi mDNS

server

libvictor_web_libray

libcubeBleClient

Qualcomm

WiF

/net/connman/service/wifi_..._managed_psk

Vic-

Switchboard

Vic-Gateway

Civet Webserver

libcivetweb

Vic-Cloud

The elements of the stack include:26

Element Description & Notes

avahi 0.6.31 A mDNS server that registers Vector’s robot name (with his

network address) on the local network;

chronyd Fetches the time from a network time server.

libcivetweb.so.1.9.1 Embedded web server

libvictor_web_library.so Anki Vector Web Services.

26 All of the software versions include an Anki webserver service systemd configuration file whose executable is missing. The most

likely explanation is that early architecture (and possibly early versions) included this separate server, and that the systemd
configuration file is an unnoticed remnant.

Figure 46: The WiFi

stack

Table 18: Elements of

the Bluetooth LE stack

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 79

33.1. FIREWALL

The network configuration includes a firewall set up with the usual configuration files:

/etc/iptables/iptables.rulesiptables
/etc/iptables/ip6tables.rulesiptables

Is set to block incoming traffic (but not internal traffic), except for:

1. Responses to outgoing traffic

2. DHCP

3. TCP port 443 for vic-gateway

4. UDP port 5353 for mDNS (Avahi)

5. And the ping ICMP

In developer builds the firewall also allows:

1. SSH access

2. Android Debugger (ADB) over TCP access

3. “Web-viz” access, which has web-server / websockets / webdav ports

4. Webots support

5. WWise profiler support

The firewall does not block outgoing traffic

33.2. WIFI CONFIGURATION

The WiFi is configured by the Vic-switchboard over Bluetooth LE. The WiFi settings cannot be

changed by the remote servers or thru the WiFi-based API; nor is information about the WiFi

settings is not stored remotely.

The WiFi is managed by connman thru the Vic-Switchbox:

 To provide a list of WiFi SSIDs to the mobile app

 To allow the mobile app to select an SSID and provide a password to

 Tell it forget an SSID

 To place the WiFi into Access Point mode

The connman settings – files for accessing known WiFi access points – are stored on the encrypted

file-system /data, in the folder:

/data/lib/connman

The path is hard-coded into connman itself. This folder is created (if it doesn’t exist) by mount-

data when it sets /data up for the robot (such as when it is new or has had its user data erased via

the “Clear User Data” menu). The contents of /var/lib/connman are copied here with each system

start.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 80

33.3. ACCESS POINT MODE

Vector can acted as a wifi access point, instead of connecting to a router. This was primarily

intended to ease development of Vector. With the OpenSource Kit this is more useful. Vector can

be put into access point mode by issuing a command over the Bluetooth LE channel.

34. NETWORK COMMUNICATION

34.1. COMMUNICATING WITH MOBILE APP AND SDK

Vector’s robot name is something that looks like “Vector-E5S6”. This name is used consistently;

it will be Vector’s:

 advertised Bluetooth LE peripheral name (although spaces are used instead of dashes)

 mDNS network name (dashes are used instead of spaces),

 the name used to sign certificates, and

 it will be the name of his WiFi Access Point, when placed into Access Point mode

34.1.1 Certificate based authentication

A certificate is generated by Vector for use with the HTTPS API and vic-gateway. The certificate

allows the mobile application and SDK-based application to validate that they are talking to the

robot that they think they are. This is optional: the applications don’t need to use it, if they do not

wish to. So what are certificates?

“Certificates can be thought of as policy documents. Any X.509 certificate consists of

 “a public key,

 “an indication who the certificate was issued for,

 “what actions the authority allows the certificate holder to perform,

 “the date the certificate is first valid on,

 “the date the certificate expires on,

 “metadata about how to check if the certificate has been revoked (optional, but highly

recommended),

 “the authority who issued the certificate, and

 “a signature across all this metadata, from the authority.”

The certificate is created by the vic-gateway-cert.service (which in turn calls the /sbin/vic-

gateway-cert script) at start-up, after the “factory reset.” When the user data is cleared, the old

certificates and robot name are cleared as well. Vector is assigned a new robot name when the

system restarts (after clearing), and then creates a new certificate.

The certificate is stored on the robot at:

/data/vic-gateway/gateway.cert

The path is hard-coded into both vic-cloud and vic-gateway. Vector posts the certificate to the

cloud servers using vic-cloud. The mobile application and SDK-based applications receive the

certificate from these servers.

Phil Vachon

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 81

Mobile App

SDK application

vic-cloud Anki Cloud

vic-gateway-cert

service
gateway.cert

The following is a synopsis of the files and scripts involved with the API certificate:

File Description

/anki/etc/vic-gateway-cert.env Holds the fault code if the vic-gate-cert.service fails.

/data/etc/robot.pem The private key is generated after a factory reset by mount-data.

/data/vic-gateway/gateway.cert The certificate used by the mobile application and SDK apps to validate the

authenticity of the robot.

/etc/systemd/system/vic-gateway-
cert.service

The startup service responsible for creating the certificate (if there isn’t one

already)

/etc/vic-gateway-cert.conf.in The template (default field values) used in creating the certificate.

/sbin/vic-gateway-cert The script that creates the certificate

vic-cloud Posts the certificate to the cloud

vic-gateway Uses the robot.pem as the private key for TLS communication with the mobile

application and SDK.

This certificate is intended to be added to the trusted SSL certificates store before a HTTPS

communication session. The certificate issued by Vector is good for 100 years. The following is

information typically embedded in a Vector certificate:

Element Value

Common Name Vector’s robot name

Subject Alternative Names Vector’s robot name

Organization Anki

Locality SF

State California

Country US

Valid From the date the certificate was created

Valid To 100 years after the date the certificate was created

Issuer Vector’s robot name, Anki

Serial Number

Figure 47: The

certificate flow from

the robot to the mobile

application

Table 19: The files,

scripts and programs

involved with the API

certificate

Table 20: Elements of

a Vector certificate

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 82

34.1.2 Token

A session token is provided by Anki servers27 to the mobile application and HTTPS-based SDK

application. This token is required to by the robot to validate that they application is talking to has

authenticated itself as an owner.

App Vector

Name & password

Session Token

Session Token

Client Token

Server

When the application(s) receive the session token from the server, they must pass it to Vector via

the Bluetooth LE RTS protocol or the HTTPS SDK protocol. The process to is generated it is

initiated in one of two ways. One method is by the Bluetooth LE command (section 40.9 Cloud

session); the other is by send a User Authentication command (see Chapter 15 section 52.5 User

Authentication). Vector will return a client token. (The session token is single use only.) The

application(s) should save this client token for future uses (it can be used indefinitely).

Vector stores information about the session and client tokens in a file at:

/data/vic-gateway/token-hashes.json

This file has a single structure with the following fields:

Field Type Description

client_tokens ClientToken[] The array of client tokens.

The ClientToken structure has the following fields:

Field Type Description

app_id string This is the name given by an application using the API. Common ones

include “companion-app” for the mobile application, and “SDK” for the

python SDK based authentication. Optional.

client_name string The name of computer requesting the client token. Optional.

hash base64 string

is_primary bool Unknown This is always false.

issued_at string The date-time that the hash / client token was created

34.2. WEB-VIZ, A VISUAL CHARACTERIZATION TOOL

Development builds of Vectors software include an optional web-sockets API and web-

visualization (webviz) tool. This feature is not present in the production releases, nor many of the

development releases. With this tool has some of the vic-server processes provide an HTTP web-

server, and web socket over it:

27 https://groups.google.com/forum/#!msg/anki-vector-rooting/YlYQsX08OD4/fvkAOZ91CgAJ
https://groups.google.com/forum/#!msg/anki-vector-rooting/XAaBE6e94ek/OdES50PaBQAJ

Figure 48: Sequence for

acquiring a client token

Table 21: The token

hashes structure

Table 22: The

ClientToken structure

https://groups.google.com/forum/%23!msg/anki-vector-rooting/YlYQsX08OD4/fvkAOZ91CgAJ
https://groups.google.com/forum/%23!msg/anki-vector-rooting/XAaBE6e94ek/OdES50PaBQAJ

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 83

Port Description

8887 The webserver built into vic-webserver

8888 The webserver built into vic-engine

8889 The webserver built into vic-anim

8890 Not used

The web-sockets provide access to internal variables and other software state. In some cases

provide points of control. The web-server, esp thru the webdav support, allows files to be

downloaded and uploaded into Vector. This includes the ability to add animation files that can be

tested.

Note: the tool is rumoured to be consume a lot of resources, causing unusual faults to occur on

Vector. It has a small overlap with the functions can be taken via the SDK interface.

35. CLOUD SERVERS

The cloud servers are used for natural language processing, storing settings, tracking diagnostic

information, and software updates.

Chipper

Handoff

Lex

Automatic Speech

Recognition &

Language

understanding

Houndify

Automatic Speech

Recognition &

Knowledge Q&A

IBM Weather

Weather related

Q&A

JDocs server

For natural language processing, the audio stream (after the “Hey Vector”) is sent to a group of

remote servers for processing. The functions are divided up across several different servers which

can provide specialized services:

Server Description

Chipper Chipper is a server that that hands off the audio processing.

Houndify The “knowledge graph” Q&A server is handled by Sound Hound

(Houndify). Note: the speech is sent to Houndify only if Lex is unable to

handle the query.

IBM Weather IBM handles the Weather related questions.

Lex Lex handles most of Vectors speech recognition, natural language

understanding, return an intent. (This is discussed a bit more in Chapter

18) The “I have a question” queries are handed off to Houndify. This

server is hosted by AWS.

Table 23: Web-viz

HTTP & web-socket

server ports

Figure 49: The cloud

servers

Table 24: Natural

language processing

servers

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 84

Chapter 17 describes the communication with these servers, including the responses that they send

back.

Chapter 18 describes typical natural language processing, and the processing of intents.

35.1. ROBOT CERTIFICATE

Each Vector has supporting TLS certificates and signing keys are stored in the OEM partition,

located in the /factory/cloud folder:

File Description

AnkiRobotDeviceCert.pem The certificate used

AnkiRobotDeviceKeys.pem The private key used

Info$(serialNum}.json A configuration file that

${serialNum} empty

The Info${serialNum}.json file has the following structure:

Field Type Description

CertDigest base64 string

CertSignature base64 string

CertSignatureAlgorithm string The name of openSSL signature algorithm to use,

“sha256WithRSAEncryption”

CommonName string ‘vic:’ followed by the serial number. (This is also called the

“thing id” in other structures.

KeysDigest base64 string

36. REFERENCES & RESOURCES

PyCozmo.

https://github.com/zayfod/pycozmo/blob/master/docs/protocol.md

https://github.com/zayfod/pycozmo/blob/master/pycozmo/protocol_declaration.py

Vector has a couple UDP ports open internally; likely this is inherited from libcozmo_engine.

The PyCozmo project has reverse engineered much of Cozmo’s UDP protocol.

Vachon, Phil Application Trust is Hard, but Apple does it Well — Security Embedded

https://www.security-embedded.com/blog/2020/11/14/application-trust-is-hard-but-apple-

does-it-well

Table 25: OEM cloud

folder

Table 26: Cloud

Info${serialNum}

structure

https://github.com/zayfod/pycozmo/blob/master/docs/protocol.md
https://github.com/zayfod/pycozmo/blob/master/pycozmo/protocol_declaration.py
https://www.security-embedded.com/blog/2020/11/14/application-trust-is-hard-but-apple-does-it-well
https://www.security-embedded.com/blog/2020/11/14/application-trust-is-hard-but-apple-does-it-well

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 85

CHAPTER 12

Body-board

Communication

Protocol

This chapter describes Vector’s body-board communication protocol.

 The kinds of activities that can be performed

 The interaction sequences

 The communication protocol stack.

37. COMMUNICATION PROTOCOL OVERVIEW

Communication with the body-board, once established, is structured as a request-response protocol

and a streaming data update. The data of the messages was packaged using an proprietary tool

called “C-Like Abstract Data structures” (CLAD) that made it easy for Anki to define message

structures – fields and values in a defined format – and generate code to encode and decode them.

The messages from the head board to the body-board have the content:

 Checking that the application firmware is running and its version

 Boot-loader updates to the firmware: Entering the boot-loader, erasing flash, writing a new

application, and verifying it

 The 4 LED RGB states

 Controls for the motors: possible direction and enable; direction and duty cycle; or a target

position and speed.

 Power control information: disable power to the system, turn off distance, cliff sensors, etc.

In turn, the body board messages to the head-board can contain (depending on the type of packet):

 The touch sensor ADC value, and state of the backpack button

 The microphone samples for all 4 microphones. (Most likely as 16 bits per sample)

 The battery voltage,

 The charging terminal voltage

 State of the charger – on docked, charging, battery critically low

 The temperature of the charger/battery

 The state of 4 motor encoders, possibly as encoder counters, possibly as IO state

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 86

 The time of flight readings, these are used to reconstruct histogram counts and SPAD

reflectivity measures.

 The values from each of the 4 cliff proximity sensors

 Which peripherals are enabled and disabled (powered down)

37.1. BASIC STRUCTURES

The data structures passed between the head and the body are packaged as frames:

F
ra

m
e

H
e

a
d

e
r

T
y
p

e

Payload

S
iz

e

C
R

C

C
L

A
D

T
y
p

e

P
a

ra
m

s
 .
..

Data

..
.

THE RS232 SERIAL LINK is the used as the transport. It handles the delivery of the bytes between

the body board and the head board. The data rate: 3 Mbits/sec28

THE FRAME identifies the start and end of a message, includes the message itself and error

detection. It also includes the kind of CLAD message that is contained.

THE C-LIKE ABSTRACT DATA (CLAD) is the layer that decodes the messages into values for fields,

and interprets them.

TIMEOUTS. The body-board maintains a timer to detect the loss of communication from the head-

board – perhaps from a software crash. If the body-board does not receive communication within

sending 200 Data Frame messages, it will turn off power.

37.2. THE MESSAGE FRAMES

To transport the messages between the head and body boards, there is a framing layer. This holds

the messages:

H
e

a
d

e
r

T
y
p

e

Payload

S
iz

e

C
R

C

When the head-board sends messages to the body-board, the header is:

AA16 ‘H’ ‘2’ ‘B’

The body-board sends messages in response to commands, and at regular intervals to the head-

board. The header of a message is:

AA16 ‘B’ ‘2’ ‘H’

28 Value from analysis of the RAMPOST, vic-robot, and dfu programs.

Figure 50: Overview of

the body-board frames

Figure 51: The format of

a frame

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 87

The rest of the frame:

 The payload type is 16 bits. The packet type implies both the size of the payload, and the

contents. If the packet type is not recognized, or the implied size does not match the

passed payload size, the packet is considered in error.

 The payload size is a 16 bit number. The maximum payload size is 1280 bytes.

 The CRC is 32 bits. It is computed on the payload only.

The tag and CLAD payload are passed to the application for interpretation.

37.3. ACKNOWLEDGEMENT AND NEGATIVE ACKNOWLEDGEMENT OF MESSAGES

Sends a message to the body-board. If the message doesn’t pass CRC checks, or the command is

not recognize, the body-board sends a NAK.

Head-Board Body-Board

Command

NAK

Otherwise it may attempt to carry out the command, and it may send back an ACK or other

response on success… or a NAK on error.

37.4. UPDATING THE FIRMWARE APPLICATION

The head-board can update the firmware in the body-board, by putting it into DFU (device

firmware upgrade) mode and downloading the replacement firmware image. If the head-board

application decides to download a (new) application to the body-board – for instance, if the version

is out of date – it does so with a sequence like:

Head-Board Body-Board

Version request

Version response

DFU mode

ACK

...

File download

File download

737416

1. Checking the version. Compares this with the version of the latest file.

2. It sends the 787816 command to erase the current application

3. It sends a serial sequence of the application data using the 667516 command.

4. Then the 737416 command is sent to validate the command (including checking its

authenticity using a digital signature), and start the application.

5. The boot-loader sends the results of the check in a 6B6116 response. The head-board

application check results, then if successful,

Figure 52: Body-board

NAK a CRC-error or bad

command

Figure 53: Sequence for

updating the body-board

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 88

6. It waits for message frames from the body-board application.

37.4.1 The format of the firmware update file

The first 16 bytes of the firmware update files holds the version. This is used only for comparing

versions. It is not sent. The remainder of the file holds the application firmware. The following

summarizes where the application firmware is placed into the STM32F030 program memory:

STM32F030 Program Memory

0x0800 0000: Bootloader

0x0800 2000: Application Control Block

0x0800 2020: Unknown

0x0800 2118: Application Entry

0x0800 211C: Application Version

0x0800 212C-: Application

0x0800 57xx: Application Vector Table

0x0800 5800-: Application

0x0800 FFFF :

Version

16 bytes

Application

firmware

Note: I don’t know what points to the vector table.

37.5. COMMAND-LINE INTERFACE

The body-board has a bidirectional serial interface for test purposes. This is located on the charger

positive pad. The single connection is half-duplex – it is used to both send and receive. The data

rate is 115.2 Kbits/sec.

Note: this communication is only implemented in DVT firmware; it is not implemented in

production firmware. It is not known how to put the DVT firmware into this mode.

When the body board powers on it sends a few header bytes and a string:

FF16 9216 1F16 CF16 FF16 FF16 FF16 FF16 “\\nbooted\n”

Thereafter body-board can receive characters from this interface and forward them with the 636416

message to the head-board for processing by vic-robot.

1. vic-robot receives these characters, and buffers them. When it sees a new line or carriage

return, it examines the line. If the line starts with a ‘>’ and is followed by a valid 3-letter

command, it will carry out the command. This may include reporting sensed values,

writing the factor calibration values or EMR.

2. If vic-robot wishes to send text, via the body-boards outgoing serial port, it uses the 636416

command to send the text characters to the body-board, which then sends them out the

charger port.

The text commands from this port are that vic-robot recognizes are:

 esn

 bsv

 mot

Figure 54: The

STM32F030 program

memory map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 89

 get

 fcc

 rlg

 eng

 smr

 gmr

 pwr

 led

38. MESSAGE FORMATS

This section describes the format and interpretation of the CLAD messages that go between the

body-board and head-board. It describes the fields and how they are encoded, etc.

 All multi-byte values are in little endian order

 The letters to describe the frame type are in the order sent (effectively the opposite of the 16-

bit values)

The following kinds of messages can be sent from the head-board to the body-board:

Frame type Payload Size Description

636416
‘dc’

32 Appears to allow sending text back to the body board and

out its backs end. [Data character? charger data?] Note:

this message is not supported in production application

firmware (i.e. 1.6).

646616

‘fd’
64 Data frame. This has all the bits for the LEDs, motor

drivers, power controls, etc.

647316
‘sd’

0 Shutdown: disconnect the battery, to shutoff the system.

667516

‘uf’
1028 Update firmware frame. Sends a 1024B as part of the

DFU payload. The first 16b is the offset in the program

memory to update; the next 16b are the number of 32-bit

words in the payload to write. (The packet is a fixed size,

so may be padded out)

6D6416

‘dm’
0 Go to DFU mode? Goto app mode? Change the mode:

enter the boot-loader? start regular reports?

727616

‘vr’
0 Requests the application version. If there is an

application, it responds with a 727616. If there isn’t

application, the boot-loader responds with a 6B6116 with a

0 payload (a NAK).

736C16

‘ls’
16 LED control

737416

‘ts’
0 Validate the flash, to check that the newly downloaded

program and that it passed signature checks. The boot-

loader sends back a 6B6116 to ACK to indicate that the

firmware passed checks, or NACK that it does not. If

successful, the application is started. [Test?]

787816

‘xx’
0 Erases the current program memory (the currently

installed image). The boot-loader sends back a 6B6116 to

acknowledge that the erase when it has completed.

Table 27: Summary of

the commands from the

head-board to the body-

board

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 90

The following kinds of messages can be sent from the body-board to the head-board:

Fame type Payload Size Description

636416

‘dc’

32 Appears to include characters. Note: this message is not

supported in production application firmware (i.e. 1.6).

646616

‘fd’
768 Data frame. Battery state – level, temperature, flags

The size of the message suggests that it holds 128 samples

from one to three microphones (4 microphones ×

2bytes/sample × 80 samples/microphone == 768 bytes)

for the voice activity detection audio processing.

666216

‘bf’
 Boot-loader frames

6b6116

‘ak’
4 The value is non-zero if an ack

727616

‘vr’
40 The first 28 payload bytes are TBD. This is followed by a

16-byte version (often printable characters). The first 16

bytes of the DFU file are also the version.

737616

‘vs’
16 Note: this message is not supported in production

application firmware (i.e. 1.6).

38.1. ENUMERATIONS

These are the indices that the communication uses to refer to sensors, motors, etc.

38.1.1 Cliff Sensors

The cliff sensors indices are:

Index Meaning

0 The front-left cliff sensor.

1 The front-right cliff sensor.

2 The back-left cliff sensor.

3 The back-right cliff sensor.

38.1.2 Motors

The motor indices are:

Index Meaning

0 The left wheel motor.

1 The right wheel motor

2 The lift motor.

3 The head motor.

Table 28: Summary of

the messages from the

body-board to the head-

board

Table 29: Cliff sensor

enumeration

Table 30: Motor

enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 91

38.2. STRUCTURES

These are the data structures used within the messages.

38.2.1 Motor Status

The motor status structure is:

Offset Size Type Parameter Description

0 4 int32_t position The new position

4 4 int32_t dlt Change in encoder count from the previous position.

8 4 uint32_t tm The number of ticks since of last change

38.3. DATA FRAME FROM BODY BOARD

The messages are sent fast enough to support microphone sample rate of 15625 samples/second for

each of the 4 microphones.

The parameters for the message from the body-board are:

Offset Size Type Parameter Description

0 4 uint32_t

4 2 uint16_t status See bit fields below.

6 1 uint8_t I2C device fault 0 if no fault, otherwise the I2C address of the sensor that

can’t communicate:

0x52: The time of flight distance sensor failed during

power on self test

0xA6: a cliff sensor failed. See the minor code for

which sensor.

7 1 uin8_t I2C fault item If the fault is 0xA6, this is the index of the first cliff

sensor that was detected to have failed. See the

enumeration above.

8 48 motor status[4] motor status The motor status (see structure above) for each of the

motors

56 8 uint16_t[4] cliff sensor Sensor readings for each of the cliff sensors

64 2 int16_t battery voltage The battery voltage, scale by 0.00136719 to get volts

66 2 int16_t charger voltage The charger voltage, scale by 0.00136719 to get volts

68 2 int16_t Body

Temperature C

The body-board MCU temperature (proxy for the battery

temperature)

72 2 uint16_t battery flags see below

0x4c 1 uint8_t prox sigma mm The low 4 bits are some sort of state

0x4e 2 uint16_t prox raw range

(mm)

The time of flight sensor’s reported range

0x50 2 uint16_t prox signal rate

(mcps)

The time of flight sensor’s reported signal strength

Table 31: Parameters

for motor status

structure

Table 32: Parameters

for Data Frame from the

body board

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 92

0x52 2 uint16_t prox ambient The time of flight sensor’s reported ambient noise

0x54 2 uint16_t prox SPAD count The time of flight sensor’s reported SPAD count

0x56 2 uint16_t prox sample

count

The time of flight sensor’s reported sample count

0x58 4 uint32_t prox calibration

result

92 4 uint16_t[2] Index 1 is the button, 0 is the touch sense ADC?

96 4 uint16_t[2] Something to do with the microphones, appears to be

indices to the buffers being used.

100 2 uint16_t Something related to the button inputs

102-128 UNKNOWN

128 640 uint16_t[320] mic samples The microphone samples. The size of the message

suggests that it holds 80 samples from each microphones

(4 microphones × 2bytes/sample × 80

samples/microphone == 640 bytes) for the voice activity

detection audio processing.

That status byte bit indices are:

Bit Index Meaning

0 This bit is set if the cliff sensor and time of flight sensor are on; it is

clear if they are off.

1 This bit is set if the motor encoders have been turned off. This is done

to save power when the motors are idle. If the bit is not set, the

encoders are enabled.

2 The head encoder has changed value (the head moved).

3 The lift encoder has changed value (the lift moved)

Battery condition bit indices are:

Bit Index Meaning

0 The charger is connected to a power source – that is, the charger IC

has detected a voltage supplied to the charging pins.

1 The battery is charging

2 The battery is disconnected.

3 The battery is overheated

4 unknown/reserved

5 The battery voltage is low, below a critical threshold (probably as

defined by the charger).

6 Emergency shutdown imminent.

Some of these bits may have had different meaning in the past, and became unused with body-

board firmware revisions.

Table 33: Status

condition indices

Table 34: Battery

condition indices

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 93

38.4. DATA FRAME FROM HEAD BOARD TO BODY BOARD

The parameters for the message from the body-board are:

Offset Size Type Parameter Description

0 4 uint32_t Sequence number(?)

4 4 uint32_t Two bit are checked.. Charger control (?)

8 8 iint16_t[4] Motor settings

24 12 uint8_t[12] LED RGB values

36 28 ignored

Table 35: Parameters

for Data Frame from the

head-board

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 94

CHAPTER 13

Vector Bluetooth LE

Communication

Protocol

This chapter describes Vector’s Bluetooth LE communication protocol.

 The kinds of activities that can be done thru communication channels

 The interaction sequences

 The communication protocol stack, including encryption, fragmentation and reassembly.

Note: communication with the Cube is simple reading and writing a characteristic, and covered in

Appendix G.

39. COMMUNICATION PROTOCOL OVERVIEW

Vector advertises services on Bluetooth LE, with the Bluetooth LE peripheral name the same as his

robot name (i.e. something that looks like “Vector-E5S6”.)

Communication with Vector, once established, is structure as a request-response protocol. The

request and responses are referred to as “C-Like Abstract Data structures” (CLAD) which are

fields and values in a defined format, and interpretation. Several of these messages are used to

maintain the link, setting up an encryption over the channel.

The application layer messages may be arbitrarily large. To support Bluetooth LE 4.1 (the version

in Vector, and many mobile devices) the CLAD message must be broken up into small chunks to

be sent, and then reassembled on receipt.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 95

Combined with application-level encryption, the communication stack looks like:

Fragmentation &

Reassembly
L

e
n

g
th Data

Encrypt &

Decrypt

L
e

n
g

th Data

B
lu

e
to

o
th

L

E
C

h
a

ra
c
te

ri
s
ti
c

C
o

n
tr

o
l Data

C
L

A
D

P
a

ra
m

1

P
a

ra
m

2 Data

..
.

T
a

g

H
a

n
d

s

h
a

k
e

1 V
e

rs
io

n

R
T

S

M
e

s
s

a
g

e
m

o
d

e

v
e

rs
io

n
l

Data

THE BLUETOOTH LE is the link/transport media. It handles the delivery, and low-level error

detection of exchanging message frames. The frames are fragments of the overall message. The

GUID’s for the services and characteristics can be found in Appendix G.

THE FRAGMENTATION & REASSEMBLY is responsible for breaking up a message into multiple

frames and reassembling them into a message.

THE ENCRYPTION & DECRYPTION LAYER is used to encrypt and decrypt the messages, after the

communication channel has been set up.

THE RTS is extra framing information that identifies the kind of CLAD message, and the version of

its format. The format changed with version, so this version code is embedded at this layer.

THE C-LIKE ABSTRACT DATA (CLAD) is the layer that decodes the messages into values for fields,

and interprets them,

Figure 55: Overview of

encryption and

fragmentation stack

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 96

39.1. SETTING UP THE COMMUNICATION CHANNEL

It sometimes helps to start with the overall process. This section will walk thru the process,

referring to later sections where detailed information resides.

If you connect for the “first time” – or wish to re-pair with him – put him on the charger and press

the backpack button twice quickly. He’ll display a screen indicating he is getting ready to pair.

If you have already paired the application with Vector, the encryption keys can be reused.

The process to set up a Bluetooth LE communication with Vector is complex. The sequence has

many steps:

Application Vector

Connection Response

Handhake

Handshake

Connection Request

Nonce

Nonce Response

Challenge

Challenge response

Challenge success

1. The application opens Bluetooth LE connection (retrieving the service and characteristics

handles) and subscribes to the “read” characteristic (see Appendix G for the UUID).

2. Vector sends handshake message; which the application receives. The handshake message

structure is given below. The handshake message includes the version of the protocol

supported.

Offset Size Type Parameter Description

0 1 uint8_t type ?

1 4 uint32_t version The version of the protocol/messages to employ

3. The application sends the handshake back

4. Then the Vector will send a connection request, consisting of the public key to use for the

session. The application’s response depends on whether this is a first-time pairing, or a

reuse.

a. First time pairing requires that Vector have already been placed into pairing

mode prior to connecting to Vector. The application keys should be created (see

section 39.3.1 First time pairing above).

b. Reconnection can reuse the public and secret keys, and the encryption and

decryption keys from a prior pairing

5. The application should then send the publicKey in the response

Figure 56: Sequence for

initiating communication

with Vector

Table 36: Parameters

for Handshake message

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 97

6. If this is a first-time pairing, Vector will display a pin code. This is used to create the

public and secret keys, and the encryption and decryption keys (see section 39.3.1 First

time pairing above). These can be saved for use in future reconnection.

7. Vector will send a nonce message. After the application has sent its response, the channel

will now be encrypted.

8. Vector will send a challenge message. The application should increment the passed value

and send it back as a challenge message.

9. Vector will send a challenge success message.

10. The application can now send other commands

If the user puts Vector on the charger, and double clicks the backpack button, Vector will usually

send a disconnect request.

39.2. FRAGMENTATION AND REASSEMBLY

An individual frame sent over Bluetooth LE is limited to 20 bytes. (This preserves compatibility

with Bluetooth LE 4.1) A frame looks like:
C

o
n

tr
o

l Payload

The control byte is used to tell the receiver how to reassemble the message using this frame.

 If the MSB bit (bit 7) is set, this is the start of a new message. The previous message

should be discarded.

 If the 2nd MSB (bit 6) is set, this is the end of the message; there are no more frames.

 The 6 LSB bits (bits 0..5) are the number of payload bytes in the frame to use.

The receiver would append the payload onto the end of the message buffer. If there are no more

frames to be received it will pass the buffer (and size count) on to the next stage. If encryption has

been set up, the message buffer will be decrypted and then passed to the RTS and CLAD. If

encryption has not been set up, it is passed directly to the RTS & CLAD.

Fragmenting reverses the process:

1. Set the MSB bit of the control byte, since this is the start of a message.

2. Copy up to 19 bytes to the payload.

3. Set the number of bytes in the 6 LSB bits of the control byte

4. If there are no more bytes remaining, set the 2nd MSB it of the control byte.

5. Send the frame to Vector

6. If there are bytes remaining, repeat from step 2.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 98

39.3. ENCRYPTION SUPPORT

For the security layer, you will need the following:

uint8_t Vectors_publicKey[32];
uint8_t publicKey [crypto_kx_PUBLICKEYBYTES];
uint8_t secretKey [crypto_kx_SECRETKEYBYTES];
uint8_t encryptionKey[crypto_kx_SESSIONKEYBYTES];
uint8_t decryptionKey[crypto_kx_SESSIONKEYBYTES];
uint8_t encryptionNonce[24];
uint8_t decryptionNonce[24];
uint8_t pinCode[16];

The variables mean:

Variable Description

decryptionKey The key used to decrypt each message from to Vector.

decryptionNonce An extra bit that is added to each message. The initial nonce’s to use are provided by Vector.

encryptionKey The key used to encrypt each message sent to Vector.

encryptionNonce An extra bit that is added to each message as it is encrypted. The initial nonce’s to use are

provided by Vector.

pinCode 6 digits that are displayed by Vector during an initial pairing.

Vectors_publicKey The public key provided by Vector, used to create the encryption and decryption keys.

There are two different paths to setting up the encryption keys:

 First time pairing, and

 Reconnection

39.3.1 First time pairing

First time pairing requires that Vector be placed into pairing mode prior to the start of

communication. This is done by placing Vector on the charger, and quickly double clicking the

backpack button.

The application should generate its own internal public and secret keys at start.

crypto_kx_keypair(publicKey, secretKey);

The application will send a connection response with first-time-pairing set, and the public key.

After Vector receives the connection response, he will display the pin code. (See the steps in the

next section for when this will occur.)

The session encryption and decryption keys can then created:

crypto_kx_client_session_keys(decryptionKey, encryptionKey, publicKey, secretKey,
Vector_publicKey);

size_t pin_length = strlen(pin);

crypto_generichash(encryptionKey, sizeof(encryptionKey), encryptionKey,

sizeof(encryptionKey), pin, pin_length);
crypto_generichash(decryptionKey, sizeof(decryptionKey), decryptionKey,

sizeof(decryptionKey), pin, pin_length);

39.3.2 Reconnecting

Reconnecting can reused the public and secret keys, and the encryption and decryption keys. It is

not known how long these persist on Vector.

Example 1: Bluetooth

LE encryption structures

Table 37: The

encryption variables

Example 2: Bluetooth

LE key pair

Example 3: Bluetooth

LE encryption &

decryption keys

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 99

39.3.3 Encrypting and decryption messages

Vector will send a nonce message with the encryption and decryption nonces to employ in

encrypting and decrypting message.

Each received enciphered message can be decrypted from cipher text (cipher, and cipherLen) to the

message buffer (message and messageLen) for further processing:

crypto_aead_xchacha20poly1305_ietf_decrypt(message, &messageLen, NULL, cipher,
cipherLen, NULL, 0L, decryptionNonce, decryptionKey);

sodium_increment(decryptionNonce, sizeof decryptionNonce);

Note: the decryptionNonce is incremented each time a message is decrypted.

Each message to be sent can be encrypted from message buffer (message and messageLen) into

cipher text (cipher, and cipherLen) that can be fragmented and sent:

crypto_aead_xchacha20poly1305_ietf_encrypt(cipher, &cipherLen, message,
messageLen, NULL, 0L, NULL, encryptionNonce, encryptionKey);

sodium_increment(encryptionNonce, sizeof encryptionNonce);

Note: the encryptionNonce is incremented each time a message is encrypted.

39.4. THE RTS LAYER

There is an extra, pragmatic layer before the messages can be interpreted by the application. The

message has two to three bytes at the header:

T
y
p

e

V
e

rs
io

n Params

T
a

g

 The type byte is either 1 or 4. If it is 1 the version number is 1.

 If type byte is 4, the version is held in the next byte. (If the type is 1, there is no version

byte).

 The next byte is the tag – the value used to interpret the message.

The tag, parameter body, and version are passed to the CLAD layer for interpretation. This is

described in the next section.

Example 4: Decrypting

a Bluetooth LE message

Example 5: Encrypting

a Bluetooth LE message

Figure 57: The format of

an RTS frame

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 100

39.5. FETCHING A LOG

The process to set up a Bluetooth LE communication with Vector is moderately complex. The

sequence has many steps:

Application Vector

Log request

Log response

File download

File download

File download

...

The log request is sent to Vector. In principal this includes a list of the kinds of logs (called filter

names) to be included. In practice, the “filter name” makes no difference.

Vector response, and if there will be a file sent, includes an affirmative and a 32-bit file identifier

used for the file transfer.

Vector zips the log files up (as a tar.bz2 compressed archive) and sends the chunks to the

application. Each chunk has this file identifier. (Conceptually there could be several files in

transfer at a time.)

The file transfer is complete when the packet number matches the packet total.

Figure 58: Sequence for

initiating communication

with Vector

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 101

39.6. A BLE SHELL CONNECTION

The process to set up a Bluetooth LE communication with Vector’s shell is moderately complex.

The sequence has many steps:

Application Vector

BLE Shell connect request

BLE Shell connect response

...

BLE Shell disconnect request

BLE Shell disconnect response

BLE Shell to Server request

BLE Shell to Server response

BLE Shell to Client response

BLE Shell to Client request

The BLE Shell Connect request is sent to Vector. Vector response will include a status code

indicating success or not. If successful a bi-directional stream can be sent.

The client has the option to close the shell connection at any time by sending a BLE Shell

Disconnect request.

Note: The BLE Shell connection requires Version 6 of the BLE protocol to be honored by Vector.

No version of the Vector software has been identified that supports this version.

Figure 59: Sequence for

communication with a

command shell on

Vector

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 102

40. MESSAGE FORMATS

This section describes the format and interpretation of the CLAD messages that go between the

App and Vector. It describes the fields and how they are encoded, etc. Fields that do not have a

fixed location, have no value for their offset. Some fields are only present in later versions of the

protocol. They are marked with the version that they are present in.

Except where otherwise stated:

 Requests are from the mobile application to Vector, and responses are Vector to the

application

 All are values in little endian order

 Request Response Min Version

Application connection
id

1F16 2016 4

BLE shell connect 2616 2716 6

BLE shell disconnect 2C16 2D16 6

BLE shell to client 2A16 2B16 6

BLE shell to server 2816 2916 6

Cancel pairing 1016 0

Challenge 0416 0416 0

Challenge success 0516 0

Connect 0116 0216 0

Cloud session 1D16 1E16 3

Disconnect 1116 0

File download 1a16 2

Log 1816 1916 2

Nonce 0316 1216

OTA cancel 1716 2

OTA update 0E16 0F16 0

SDK proxy 2216 2316 5

Response 2116 4

SSH 1516 1616 0

Status 0A16 0B16 0

Versions list 2416 2516 6

WiFi access point 1316 1416 0

WiFi connect 0616 0716 0

WiFi forget 1B16 1C16 3

WiFi IP 0816 0916 0

WiFi scan 0C16 0D16 0

Table 38: Summary of

the commands

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 103

40.1. APPLICATION CONNECTION ID

Assigns a DAS/Analytics id to use with the appication for this Bluetooth LE session.

40.1.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 2 uint16_t id length The length of the id; may be 0

2 varies uint8_t[id
length]

id The DAS/Analytics id to associate with the Application

for this Bluetooth LE session.

40.1.2 Response

There is no response.

Table 39: Parameters

for Application

Connection Id request

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 104

40.2. BLE SHELL CONNECT

40.2.1 Request

The request body has no parameters.

40.2.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status The error code (or indication of success) for the

command.

40.3. BLE SHELL DISCONNECT

40.3.1 Request

The request body has no parameters.

40.3.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status The error code (or indication of success) for the

command.

40.4. BLE SHELL TO CLIENT

40.4.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 2 uint16_t text length The length of the text; may be 0

2 varies uint8_t[text
length]

text The text to send to the client from the shell.

40.4.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status The error code (or indication of success) for the

command.

Table 40: Parameters

for BLE Shell Connect

response

Table 41: Parameters

for BLE Shell

Disconnect response

Table 42: Parameters

for BLE Shell to Client

request

Table 43: Parameters

for BLE Shell to Client

response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 105

40.5. BLE SHELL TO SERVER

40.5.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 2 uint16_t text length The length of the text; may be 0

2 varies uint8_t[text
length]

text The text to send to the shell (server) from the client.

40.5.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status The error code (or indication of success) for the

command.

Table 44: Parameters

for BLE Shell to Server

request

Table 45: Parameters

for BLE Shell to Server

response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 106

40.6. CANCEL PAIRING

Speculation: this is sent by the application to cancel the pairing process

40.6.1 Request

The command has no parameters.

40.6.2 Response

There is no response.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 107

40.7. CHALLENGE

This challenge is sent by Vector to the application if he liked the response to a nonce message.

40.7.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 4 uint8_t value The challenge value

The application, when it receives this message, should increment the value and send the response

(a challenge message).

40.7.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 4 uint8_t value The challenge value; this is 1 + the value that was

received.

If Vector accepts the response, he will send a challenge success.

Table 46: Parameters

for challenge request

Table 47: Parameters

for challenge response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 108

40.8. CHALLENGE SUCCESS

The challenge success is sent by Vector if the challenge response was accepted.

40.8.1 Request

The command has no parameters.

40.8.2 Response

There is no response.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 109

40.9. CLOUD SESSION

This command is used to request a cloud session.

40.9.1 Command

The parameters of the request body are:

Offset Size Type Parameter Description

0 2 uint16_t session token
length

The number of bytes in the session token; may be 0

2 varies uint8_t session token The session token, as received from the cloud server.29

 1 uint8_t client name

length

The number of bytes in the client name string; may be 0

version >= 5

 varies uint8_t[] client name The client name string. Informational only. The mobile

app uses the name of the mobile device.

version >= 5

 1 uint8_t application id

length

The number of bytes in the application id string; may be

0; version >= 5

 varies uint8_t[] application id The application id. Informational only. The mobile

uses “companion-app”. version >= 5

40.9.2 Response result

The parameters for the connection response message are:

Offset Size Type Parameter Description

0 1 uint8_t success 0 if failed, otherwise successful

1 1 uint8_t status See Table 50: Cloud status enumeration

2 1 uint16_t client token

GUID length

The number of bytes in the client token GUID; may be 0

 varies uint8_t[] client token
GUID

The client token GUID. The client token GUID should

be saved for future use.

The cloud status types are:

Index Meaning

0 unknown error

1 connection error

2 wrong account

3 invalid session token

4 authorized as primary

5 authorized as secondary

6 reauthorization

29 https://groups.google.com/forum/#!msg/anki-vector-rooting/YlYQsX08OD4/fvkAOZ91CgAJ
https://groups.google.com/forum/#!msg/anki-vector-rooting/XAaBE6e94ek/OdES50PaBQAJ

Table 48: Parameters

for Cloud Session

request

Table 49: Parameters

for Cloud Session

Response

Table 50: Cloud

status enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 110

40.10. CONNECT

The connect request comes from Vector at the start of a connection. The response is from the

application.

40.10.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 32 uint8_t[32] publicKey The public key for the connection

The application, when it receives this message, should use the public key for the session, and

send a response back.

40.10.2 Response

The parameters for the connection response message are:

Offset Size Type Parameter Description

0 1 uint8_t connectionType See Table 53: Connection types enumeration

1 32 uint8_t[32] publicKey The public key to use for the connection

The connection types are:

Index Meaning

0 first time pairing (requests pin code to be displayed)

1 reconnection

The application sends the response, with its publicKey (see section 39.3 Encryption support). A

“first time pairing” connection type will cause Vector to display a pin code on the screen

If a first time pairing response is sent:

 If Vector is not in pairing mode – was not put on his charger and the backpack button

pressed twice, quickly – Vector will respond. Attempting to enter pairing mode now will

cause Vector to send a disconnect request.

 If Vector is in pairing mode, Vector will display a pin code on the screen, and send a nonce

message, triggering the next steps of the conversation.

If a reconnection is sent, the application would employ the public and secret keys, and the

encryption and decryption keys from a prior pairing.

Table 51: Parameters

for Connection request

Table 52: Parameters

for Connection

Response

Table 53: Connection

types enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 111

40.11. DISCONNECT

This may be sent by Vector if there is an error, and it is ending communication. For instance, if

Vector enters pairing mode, it will send a disconnect.

The application may send this to request Vector to close the connection.

40.11.1 Request

The command has no parameters.

40.11.2 Response

There is no response.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 112

40.12. FILE DOWNLOAD

This command is used to pass chunks of a file from Vector to the application. Files are broken up

into chunks and sent.

40.12.1 Request

There is no direct request.

40.12.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status

1 4 uint32_t file id

5 4 uint32_t packet number The chunk within the download

9 4 uint32_t packet total The total number of packets to be sent for this file

download

13 2 uint16_t length The number of bytes to follow (can be 0)

 varies uint8_t[length] bytes The bytes of this file chunk

Table 54: Parameters

for File Download

response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 113

40.13. LOG

This command is used to request the Vector send a compressed archive of the logs.

40.13.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 1 uint8_t mode

1 2 uint16_t num filters The number of filters in the array

3 varies filter[num
filters]

filters The filter names

Each filter entry has the following structure:

Offset Size Type Parameter Description

0 2 uint16_t filter length The length of the filter name; may be 0

2 varies uint8_t[filter
length]

filter name The filter name

40.13.2 Response

It can take several seconds for Vector to prepare the log archive file and send a response. The

response will be a “log response” (below) and a series of “file download” responses.

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t exit code

1 4 uint32_t file id A 32-bit identifier that will be used in the file download

messages.

Table 55: Parameters

for Log request

Table 56: Log filter

Table 57: Parameters

for Log Response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 114

40.14. NONCE

A nonce is sent by Vector after he has accepted the application’s key. The application is to send a

response.

40.14.1 Request

The parameters for the nonce request message are:

Offset Size Type Parameter Description

0 24 uint8_t[24] toVectorNonce The nonce to use for sending stuff to Vector

24 24 uint8_t[24] toAppNonce The nonce for receiving stuff from Vector

40.14.2 Response

After receiving a nonce, if the application is in first-time pairing the application should send a

response, with a value of 3.

Offset Size Type Parameter Description

0 1 uint8_t connection tag This is always 3

After the response has been sent, the channel will now be encrypted. If vector likes the response,

he will send a challenge message.

Table 58: Parameters

for Nonce request

Table 59: Parameters

for Nonce response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 115

40.15. OTA UPDATE

This command is used to request the Vector download software from a given server URL.

40.15.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 1 uint8_t length The length of the URL; may be 0

1 varies uint8_t[length] URL The URL string

40.15.2 Response

The response will be one or more “OTA response” indicating the status of the update, or errors.

Status codes >= 200 indicate that the update process has completed. The update has completed the

download when the current number of bytes match the expected number of bytes.

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t status See Table 62: OTA status enumeration

1 8 uint64_t current The number of bytes downloaded

9 8 uint64_t expected The number of bytes expected to be downloaded

The OTA status codes are:

Status Meaning

0 idle

1 unknown

2 in progress

3 complete

4 rebooting

5 error

200… Status codes from the update-engine. See Appendix D, Table 606: OTA

update-engine status codes.

 Note: the status codes 200 and above are from the update-engine, and are given in Appendix D.

Table 60: Parameters

for OTA request

Table 61: Parameters

for OTA Response

Table 62: OTA status

enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 116

40.16. RESPONSE

This message will be sent on the event of an error. Primarily if the session is not cloud authorized

and the command requires it.

Offset Size Type Parameter Description

0 1 uint16_t code 0 if not cloud authorized, otherwise authorized

1 1 uint8_t length The number of bytes in the string that follows.

 varies uint8_t [length] text A text error message.

Table 63: Parameters

for Response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 117

40.17. SDK PROXY

This command is used to pass the gRPC/protobufs messages to Vector over Bluetooth LE. It

effectively wraps a HTTP request/response. Note: the HTTPS TLS certificate is not employed

with this command.

40.17.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 1 uint8_t GUID length The number of bytes in the GUID string; may be 0

2 varies uint8_t[GUID
length]

GUID The GUID string

 1 uint8_t msg length The number of bytes in the message id string

 varies uint8_t[msg id
length]

msg id The message id string

 1 uint8_t path length The number of bytes in the URL path string

 varies uint8_t[path
length]

path The URL path string

 2 uint16_t JSON length The length of the JSON

 varies uint8_t[JSON
length]

JSON The JSON (string)

40.17.2 Response

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t msg id length The number of bytes in the message id string; may be 0

2 varies uint8_t[msg id
length]

msg id The message id string

 2 uint16_t status code The HTTP-style status code that the SDK may return.

 1 uint8_t type length The number of bytes in the response type string

 varies uint8_t[type
length]

type The response type string

 2 uint16_t body length The length of the response body

 varies uint8_t[body
length]

body The response body (string)

Table 64: Parameters

for the SDK proxy

request

Table 65: Parameters

for the SDK proxy

Response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 118

40.18. SSH

This command is used to request the Vector allow SSH. SSH is supported only in developer

releases (and not all). SSH is not supported in the production release software.

40.18.1 Request

The SSH key command passes the authorization key by dividing it up into substrings and passing

the list of substrings. The substrings are appended together by the recipient to make for the overall

authorization key.

The parameters for the request message are:

Offset Size Type Parameter Description

0 2 uint16_t num substrings The number of SSH authorization keys; may be 0

2 varies substring[num
substrings]

substrings The array of authorization key strings (see below).

Each authorization key substring has the following structure:

Offset Size Type Parameter Description

0 1 uint8_t substring length The length of the substring; may be 0

1 varies uint8_t[substri
nglength]

substring UTF8 substring of the SSH authorization key

40.18.2 Response

The response has no parameters.

Table 66: Parameters

for SSH request

Table 67: SSH

authorization key

substring

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 119

40.19. STATUS

This command is used to request basic info from Vector.

40.19.1 Request

The request has no parameters.

40.19.2 Response

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t SSID length The number of bytes in the SSID string; may be 0

2 varies uint8_t[SSID
length]

SSID The WiFi SSID (hex string).

 1 uint8_t WiFi state See Table 69: WiFi state enumeration

 1 uint8_t access point 0 not acting as an access point, otherwise acting as an

access point

 1 uint8_t Bluetooth LE

state

0 if the Bluetooth

 1 uint8_t Battery state

 1 uint8_t version length The number of bytes in the version string; may be 0

version >= 2

 varies uint8_t [version
length]

version The version string; version >= 2

 1 uint8_t ESN length The number of bytes in the ESN string; may be 0

version >= 4

 varies uint8_t[ESN
length]

ESN The electronic serial number string; version >= 4

 1 uint8_t OTA in progress 0 over the air update not in progress, otherwise in

process of over the air update; version >= 2

 1 uint8_t has owner 0 does not have an owner, otherwise has an owner;

version >= 3

 1 uint8_t cloud authorized 0 is not cloud authorized, otherwise is cloud authorized;

version >= 5

Note: a hex string is a series of bytes with values 0-15. Every pair of bytes must be converted to a

single byte to get the characters. Even bytes are the high nibble, odd bytes are the low nibble.

The WiFi states are:

Index Meaning

0 Unknown

1 Online

2 Connected

3 Disconnected

Table 68: Parameters

for Status Response

Table 69: WiFi state

enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 120

40.20. VERSIONS LIST

40.20.1 Request

The request body has no parameters.

40.20.2 Response

The parameters of the response body are:

Offset Size Type Parameter Description

0 2 uint16_t length The length of the array; may be 0

2 varies uint16_t[length
]

versions An array of version numbers.

Table 70: Parameters

for Version List

response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 121

40.21. WIFI ACCESS POINT

This command is used to request that the Vector act as a WiFi access point. This command

requires that a “cloud session” have been successfully started first (see section 40.9 Cloud session).

If successful, Vector will provide a WiFi Access Point with an SSID that matches his robot name.

40.21.1 Request

The parameters of the request body are:

Offset Size Type Parameter Description

0 1 uint8_t enable 0 to disable the WiFi access point, 1 to enable it

40.21.2 Response

If the Bluetooth LE session is not cloud authorized a “response” message will be sent with this

error. Otherwise the WiFi Access Point response message will be sent.

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t enabled 0 if the WiFi access point is disabled, otherwise enabled

1 1 uint8_t SSID length The number of bytes in the SSID string; may be 0

2 varies uint8_t[SSID
length]

SSID The WiFi SSID (hex string)

 1 uint8_t password length The number of bytes in the password string; may be 0

 varies uint8_t
[password
length]

password The WiFi password

Table 71: Parameters

for WiFi Access Point

request

Table 72: Parameters

for WiFi Access Point

Response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 122

40.22. WIFI CONNECT

This command is used to request Vector to connect to a given WiFi SSID. Vector will retain this

WiFi for future use.

40.22.1 Request

The parameters for the request message are:

Offset Size Type Parameter Description

0 1 uint8_t SSID length The number of bytes in the SSID string; may be 0

1 varies uint8_t[SSID
length]

SSID The WiFi SSID (hex string)

 1 uint8_t password length The number of bytes in the password string; may be 0

 varies uint8_t
[password
length]

password The WiFi password

 1 uint8_t timeout How long to given the connect attempt to succeed.

 1 uint8_t auth type The type of authentication to employ; see Table 74:

WiFi authentication types enumeration

 1 uint8_t hidden 0 the access point is not hidden; 1 it is hidden

The WiFi authentication types are:

Index Meaning

0 None, open

1 WEP

2 WEP shared

3 IEEE8021X

4 WPA PSK

5 WPA2 PSK

6 WPA2 EAP

40.22.2 Response

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t SSID length The length of the SSID that was deleted; may be 0

1 varies uint8_t[SSID
length]

SSID The SSID (hex string) that was deleted

 1 uint8_t WiFi state See Table 69: WiFi state enumeration

 1 uint8_t connect result version >= 3

A pretty Wi-Fi for the

little guy

Table 73: Parameters

for WiFi Connect

request

Table 74: WiFi

authentication types

enumeration

Table 75: Parameters

for WiFi Connect

command

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 123

40.23. WIFI FORGET

This command is used to request Vector to forget a WiFi SSID.

40.23.1 Request

The parameters for the request message are:

Offset Size Type Parameter Description

0 1 uint8_t delete all 0 if Vector should delete only one SSID; otherwise

Vector should delete all SSIDs

1 1 uint8_t SSID length The length of the SSID that to be deleted; may be 0

2 varies uint8_t[SSID
length]

SSID The SSID (hex string) to be deleted

40.23.2 Response

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t did delete all 0 if only one; otherwise Vector deleted all SSIDs

1 1 uint8_t SSID length The length of the SSID that was deleted; may be 0

2 varies uint8_t[SSID
length]

SSID The SSID (hex string) that was deleted

Table 76: Parameters

for WiFi Forget request

Table 77: Parameters

for WiFi Forget response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 124

40.24. WIFI IP ADDRESS

This command is used to request Vector’s WiFi IP address.

40.24.1 Request

The request has no parameters

40.24.2 Response

The parameters for the response message are:

Offset Size Type Parameter Description

0 1 uint8_t has IPv4 0 if Vector doesn’t have an IPv4 address; other it does

1 1 uint8_t has IPv6 0 if Vector doesn’t have an IPv6 address; other it does

2 4 uint8_t[4] IPv4 address Vector’s IPv4 address

6 32 uint8_t[16] IPv6 address Vector’s IPv6 address

Table 78: Parameters

for WiFi IP Address

response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 125

40.25. WIFI SCAN

This command is used to request Vector to scan for WiFi access points.

40.25.1 Request

The command has no parameters.

40.25.2 Response

The response lists the Wi-Fi access points Vector can find. The parameters for the response

message are:

Offset Size Type Parameter Description

0 1 uint8_t status code

1 1 uint8_t num entries The number of access points in the array below

2 varies AP[num
entries]

access points The array of access points

Each access point has the following structure:

Offset Size Type Parameter Description

0 1 uint8_t auth type The type of authentication to employ; see Table 74:

WiFi authentication types enumeration

1 1 uint8_t signal strength The number of bars, 0..4

2 1 uint8_t SSID length The length of the SSID string

3 varies uint8_t[SSID
length]

SSID The SSID (hex string)

 1 uint8_t hidden 0 not hidden, 1 hidden; version >= 2

 1 uint8_t provisioned 0 not provisioned, 1 provisioned; version>= 3

finding hot signals in

Vectors area

Table 79: Parameters

for WiFi scan response

Table 80: Parameters

access point structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 126

CHAPTER 14

Cube Bluetooth LE

Communication

Protocol

This chapter describes communication protocol to talk with the Cube.

 The kinds of activities that can be performed

 The interaction sequences

 The characteristics.

41. CUBE COMMUNICATION PROTOCOL OVERVIEW

Vector can be “paired” with a cube – or he’ll automatically pair with the first cube he finds during

setup – and will treat this as his preferred cube. If he is unable can’t connect with his preferred

cube, he falls back to connecting the first cube found in the area while playing.

Vector manages the link with the cube, and data is sent and received using Bluetooth LE

characteristics. Vector may send values, fetch values from the Cube, or ask to be sent values when

they change.

When Bluetooth LE is in an unconnected state, it sends out advertisements at a regular interval, but

not too speedy. When Vector connects with the cube, it doesn’t open a stream of continuous bits.

Instead, it negotiates a new interval that is appropriate for speed of interaction, distance, and

battery life.

41.1. SENDING THE FIRMWARE APPLICATION

The Cube has a boot-loader built in, but the application firmware is held in SRAM. It has to be

downloaded to the cube by Vector. The Vector application is determines if the application is

already present by reading the application firmware version. The application download is done

with a sequence like:

Vector Cube

Version request

Version response

...

OTA download

OTA download

Paul m Brett

Figure 60: Sequence for

sending the Cube

firmware

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 127

7. Checking the version. Compares this with the version of the latest file. If the version

identifier is matches, it skips the reset of the steps

8. Vector then sends the bytes of the application (from the cube firmware file) down in 20

byte chunks.

41.1.1 The format of the firmware update file

The first 16 bytes of the firmware update files holds the version. This is used only for comparing

versions. It is not sent. The remainder of the file holds the application firmware:

Version

16 bytes

Application firmware

Encrypted

41.2. RETRIEVING AND STREAMING ACCELEROMETER DATA

Based on the level interaction, Vector may increase the rate that the Cube sends updates from its

accelerometer:

Unconnected InteractableBackground

The three different rates of communication are used between the Cube and Vector:

1. The lowest level is unconnected –the Cube is just sending out advertisements (that is, “a

hello-world I exist”) a modest interval; there isn’t an active Bluetooth LE connection.

2. The next level is background. The application is getting just enough information from the

cube to know its orientation, broad movements (and maybe that it was tapped).

3. The highest update rate is the interactable level. The cube is configured to send much

more responsive information on the cube orientation, sent fast (or sensitive) enough to

detect taps, and tell if the cube is being held. This rate consumes the most power.

The behavior system drives the level interest in the cube. The condition or active behavior

requests a level of service. The request can be temporary, using a timeout, so that if nothing

interesting is detected in a reasonable period, it falls back to the lower rate.

Figure 61: The Cube

firmware file

Figure 62: A

representation of the

different rates of

communication

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 128

42. CHARACTERISTIC MESSAGE FORMATS

This section describes the format and interpretation of the characteristics that go between the

Vector and the Cube. It describes the fields and how they are encoded, etc.

 All multi-byte values are in little endian order

See Appendix G for the GUIDs for the characteristics

42.1. STRUCTURES

These are the data structures used within the messages.

42.1.1 Accelerometer data

The structure for the accelerometer data is:

Offset Size Type Parameter Description

0 2 int16_t X The measurement (in milli-gs) along the X-axis.

2 2 int16_t Y The measurement (in milli-gs) along the Y-axis.

4 2 int16_t Z The measurement (in milli-gs) along the Z-axis.

42.1.2 LED data

The structure for the LED data is:

Offset Size Type Parameter Description

0 1 uint8_t index Sequential index, starting at 0. This is the step in the

light sequence pattern to play.

1 1 uint8_t red The red-channel color value

2 1 uint8_t green The green-channel color value

3 1 uint8_t blue The blue-channel color value

4 1 uint8_t alpha The alpha-channel color value. Usually 0

5 1 uint8_t duration The amount of time, in milliseconds(?), to show the

color before proceeding to the next step.

This structure is related to the ones given Chapter 23 section 103 Cube lights Animation for cube

light animation. Probably separate for each of the LEDs.

42.2. LED CONTROL

The parameters of the LED control characteristic are:

Offset Size Type Parameter Description

0 1 uint8_t trigger 1 set light information

1 18 LED data[3] LED data The LED settings for each step

Paul m Brett

Table 81: Parameters

for accelerometer

structure

Table 82: Parameters

for LED control structure

Table 83: Parameters

for accelerometer

characteristic

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 129

The parameters of the LED control characteristic are:

Offset Size Type Parameter Description

0 1 uint8_t trigger 0 Trigger s or starts it

1 1 uint8_t[4] sequence Id The sequence index to start with for that LED.

42.3. APPLICATION VERSION

This is used to retrieve the version string for the application. It is used to determine if the

application is present in the Cube, or needs to be sent to the Cube. The parameters of the

application version are:

Offset Size Type Parameter Description

0 varies char[] version Empty if there is no application. Otherwise, the version

of the application. The version is also the date and time

of the firmware build.

42.4. BATTERY AND ACCELEROMETER CHARACTERISTIC

The parameters of the battery and accelerometer characteristic are:

Offset Size Type Parameter Description

0 2 uint16_t battery battery ADC value

2 18 Accel_t[3] accelerometer Accelerometer samples

42.5. OTA DOWNLOAD

This characteristic is used to send the firmware. These are sent as a series of 20 byte chunks. The

application firmware is encrypted and will be decrypted by the boot-loader.

42.6. REFERENCES & RESOURCES

Brett, Paul, Communicating with vectors cube

https://forums.anki.com/t/communicating-with-vectors-cube/43042

Paul digs into emulating the Vector’s cube and identifies elements of the protocol. This

chapter was adapted from this information.

Table 84: Parameters

for accelerometer

characteristic

Table 85: Parameters

for version characteristic

Table 86: Parameters

for accelerometer

characteristic

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 130

CHAPTER 15

The HTTPS based

API

This chapter describes the communication with Vector via the local HTTPS.

Note: the information in this chapter comes from the protobuf specification files in the python

SDK, from the SDK itself, and some analysis of the mobile application. All quotes (unless

otherwise indicated) are from the SDK.

43. OVERVIEW OF THE SDK HTTPS API

The descriptions below30 give the JSON keys, and their value format. It is implemented as

gRPC/protobufs interaction over HTTP. (Anki has frequently said that the SDK included code (as

python) with the protobuf spec so that others could use their own preferred implementation

language.) Each command is requested by POST-ing the request structure to the given relative

URL (relative to Vector’s address or local network name) and interpreting the returned body as the

response structure.

The HTTPS header should include

 Bearer BASE64KEY

 Content-Type: application/json

(The JSON request is posted in the body)

43.1. SDK MESSAGE GROUPINGS

The major groups of messages here are:

 Accessories and custom objects

 Actions and behaviors – setting the current priority and cancelling actions

 Alexa configuration – configuring Vector to use Alexa’s services

 Audio – playing sounds on Vector, and submitting text to speech

 Battery – the current state of charge

 Connection – authenticating with the remote servers to allow access to Vector, connection

management, event stream, and end-point version info

 Cube – commands to manage and interact with the cube

 Diagnostics – checking the connection with the cloud, and uploading log information

 Display – display images on Vector’s LCD

30 The protocol was specified in Google Protobuf.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 131

 Faces (of people, not Vector’s face) – changing the name of a face, deleting a face

 Features and entitlements – the features that are enabled (or disabled)

 Image processing – Getting a video stream, and enabling (or disabling) video processing

steps, retrieving & changing the camera exposure settings.

 Interactions with objects (outside of the cube)

 JDocs, the JSON document storage interface

 Map and Navigation

 Motion Control

 Motion Sensing – how Vector senses that he is moving

 Onboarding

 Photos – commands to access (and delete) photographs and their thumbnails

 Settings and Preferences

 Software Updates, used to update Vector’s software – operating system, applications,

assets, etc.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 132

44. COMMON ELEMENTS

The enumerations and structures in this section are common to many commands.

44.1. ENUMERATIONS

44.1.1 ResultCode

The ResultCode enumeration has the following named values:

Name Value Description

ERROR_UPDATE_IN_PROGRESS 1 The settings could not be applied; there is already

another update to the settings in process.

SETTINGS_ACCEPTED 0 The settings were successfully saved.

44.1.2 RobotStatus

The RobotStatus is a bit mask used to indicate what Vector is doing, and the status of his controls.

It is used in the RobotState message. The enumeration has the following named bits (any number

may be set). Note that some bits have two names; the second name is one employed by Anki’s

python SDK.

Name Value Description

ROBOT_STATUS_NONE 0000016

ROBOT_STATUS_IS_MOVING

ROBOT_STATUS_ARE_MOTORS_MOVING
0000116 This bit is set “if Vector is currently moving any of

his motors (head, arm or wheels/treads).”

ROBOT_STATUS_IS_CARRYING_BLOCK 0000216 This bit is set “if Vector is currently carrying a

block.”

ROBOT_STATUS_IS_PICKING_OR_PLACING
ROBOT_STATUS_IS_DOCKING_TO_MARKER

0000416 This bit is set “if Vector has seen a marker and is

actively heading toward it (for example his charger

or cube).”

ROBOT_STATUS_IS_PICKED_UP 0000816 This bit is set “if Vector is currently picked up (in

the air),” being held or is on his side. Vector “uses

the IMU data to determine if the robot is not on a

stable surface with his treads down.” If Vector is

not on stable surface (with his treads down), this bit

is set.

ROBOT_STATUS_IS_BUTTON_PRESSED 0001016 This bit is set “if Vector's button is pressed.”

ROBOT_STATUS_IS_FALLING 0002016 This bit is set “if Vector is currently falling.”

ROBOT_STATUS_IS_ANIMATING 0004016 This bit is set “if Vector is currently playing an

animation.”

ROBOT_STATUS_IS_PATHING 0008016 This bit is set “if Vector is currently traversing a

path.”

ROBOT_STATUS_LIFT_IN_POS 0010016 This bit is set “if Vector's arm is in the desired

position.” It is clear “if still trying to move it

there.”

ROBOT_STATUS_HEAD_IN_POS 0020016 This bit is set “if Vector's head is in the desired

position.” It is clear “if still trying to move there.”

ROBOT_STATUS_CALM_POWER_MODE 0040016 This bit is set “if Vector is in calm power mode.

Table 87: ResultCode

Enumeration

Table 88: RobotStatus

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 133

Calm power mode is generally when Vector is

sleeping or charging.”

ROBOT_STATUS_IS_BATTERY_DISCONNECT

ED
0080016 Not officially defined. This bit is set if the battery

is disconnected.

ROBOT_STATUS_IS_ON_CHARGER 0100016 This bit is set “if Vector is currently on the

charger.” (As determined by the charging

electronics.) Note: Vector may be on the charger

without charging.

ROBOT_STATUS_IS_CHARGING 0200016 This bit is set “if Vector is currently charging.”

ROBOT_STATUS_CLIFF_DETECTED 0400016 This bit is set “if Vector detected a cliff using any

of his four cliff sensors.”

ROBOT_STATUS_ARE_WHEELS_MOVING 0800016 This bit is set “if Vector's wheels/treads are

currently moving.”

ROBOT_STATUS_IS_BEING_HELD 1000016 This bit is set “if Vector is being held.”

Note: ROBOT_STATUS_IS_PICKED_UP will also be

set when this bit is set.

Vector “uses the IMU to look for tiny motions that

suggest the robot is actively being held in

someone's hand.” This is used to distinguish from

other cases, such as falling, on its side, etc.

ROBOT_STATUS_IS_MOTION_DETECTED

ROBOT_STATUS_IS_ROBOT_MOVING
2000016 This bit is set “if Vector is in motion. This includes

any of his motors (head, arm, wheels/tracks) and if

he is being lifted, carried, or falling.”

ROBOT_STATUS_IS_BATTERY_OVERHEATED 4000016 Not official defined. This bit is set if Vector’s

battery temperature is considered too hot.

reserved 8000016 reserved

ROBOT_STATUS_ENCODERS_DISABLED 10000016 Not officially defined. This bit is set if Vector has

turned off the motor encoders. This is done to save

power when the motors are idle.

ROBOT_STATUS_ENCODER_HEAD_INVALID 20000016 Not officially defined. This bit is set if Vector the

encoder for the head is not valid.

ROBOT_STATUS_ENCODER_LIFT_INVALID 40000016 Not officially defined. This bit is set if Vector the

encoder for the head is not valid.

ROBOT_STATUS_IS_BATTERY_LOW 100000016 Not officially defined. This bit is set if Vector

battery voltage is critically low; if not on a charger,

Vector will power down.

ROBOT_STATUS_IS_SHUTDOWN_IMMINENT 200000016 Not officially defined. This bit is set if the body

board will turn off power very soon. This may be

due to excessive temperature or battery under

voltage.

Note: the RobotStatus is maintained by vic-robot

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 134

44.2. STRUCTURES

44.2.1 CladPoint

The CladPoint is used to represent a 2D rectilinear point on an image or in the 2D map. It has the

following fields:

Field Type Units Description

x float pixels The x-coordinate of the point

y float pixels The y-coordinate of the point

44.2.2 CladRect

The CladRect is used to represent a 2D rectilinear rectangle on an image. It has the following

fields:

Field Type Units Description

height float pixels The height of the rectangle

width float pixels The width of the rectangle

x_top_left float pixels The x-coordinate of the top-left corner of the

rectangle within the image.

y_top_left float pixels The y-coordinate of the top-left corner of the

rectangle within the image.

44.2.3 PoseStruct

The PoseStruct is used to represent a 3D rectilinear point and orientation on the map. It has the

following fields:

Field Type Units Description

origin_id uint32 Which version of the map this pose is in (0 for

none or unknown). See Chapter 19 for a

description of the mapping origin id.

q0 float Part of the rotation quaternion

q1 float Part of the rotation quaternion

q2 float Part of the rotation quaternion

q3 float Part of the rotation quaternion

x float mm The x coordinate

y float mm The y coordinate

z float mm The z coordinate

44.2.4 ResponseStatus

The ResponseStatus is “a shared response message sent back as part of most requests. This will

indicate the generic state of the request.” It has the following fields:

Table 89: CladPoint

JSON structure

Table 90:

CladRectangle JSON

structure

Table 91: PoseStruct

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 135

Field Type Units Description

code StatusCode “The generic status code to give high-level insight

into the progress of a given message.”

Table 92:

ResponseStatus JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 136

The StatusCode is used to indicate state of the request.

Name Value Description

UNKNOWN 0

RESPONSE_RECEIVED 1 “The message has completed as expected.”

REQUEST_PROCESSING 2 “The message has been sent to the robot.”

OK 3 “The message has been handled successfully at the

interface level.”

FORBIDDEN 100 “The user was not authorized.”

NOT_FOUND 101 “The requested attribute was not found.”

ERROR_UPDATE_IN_PROGRESS 102 “Currently updating values from another call.”

45. ACCESSORIES AND CUSTOM OBJECTS

This section describes the objects that Vector can see and track in his map. Specialized accessories

– the charger and cube – are broken out into their own sections.

See also section 53 Cube and section 59 Interactions with Objects

You too can create custom objects for Vector to… at least see and perceive. Maybe even love.

There are four kinds of custom objects that you can define:

 A fixed, unmarked cube-shaped object. The object is in a fixed position and orientation,

and it can’t be observed (since it is unmarked). So there won’t be any events related to this

object. “This could be used to make Vector aware of objects and know to plot a path

around them.”

 A flat wall with only a front side,

 A cube, with the same marker on each side.

 A box with different markers on each side.

A note about object id’s: The object id may change: “a cube disconnecting and reconnecting it's

removed and then re-added to robot's internal world model which results in a new ID.”

The client should employ a timer for each potential visual object. If there isn’t an “object

observed” event received in the time period, it should be assumed “that Vector can no longer see

an object.”

45.1. ENUMERATIONS

 The CustomObjectMarker enumerates the marker symbols

 The CustomType refers to the one of the 20 possible custom objects that can be defined

 The ObjectFamily is an older, now deprecated method, of enumerating the kind of object

(as in, charger, light cube, wall, box, or custom cube).

 The ObjectType enumeration is the preferred method of enumerating the kinds of objects

Table 93: StatusCode

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 137

45.1.1 CustomObjectMarker

The CustomObjectMarker is used represent the marker symbol used. The symbols are predefined,

with the images that Vector recognizes included in the SDK. The enumeration has the following

named values:

Name Value Description

CUSTOM_MARKER_UNKNOWN 0

CUSTOM_MARKER_CIRCLES_2 1

CUSTOM_MARKER_CIRCLES_3 2

CUSTOM_MARKER_CIRCLES_4 3

CUSTOM_MARKER_CIRCLES_5 4

CUSTOM_MARKER_DIAMONDS_2 5

CUSTOM_MARKER_DIAMONDS_3 6

CUSTOM_MARKER_DIAMONDS_4 7

CUSTOM_MARKER_DIAMONDS_5 8

CUSTOM_MARKER_HEXAGONS_2 9

CUSTOM_MARKER_HEXAGONS_3 10

CUSTOM_MARKER_HEXAGONS_4 11

CUSTOM_MARKER_HEXAGONS_5 12

CUSTOM_MARKER_TRIANGLES_2 13

CUSTOM_MARKER_TRIANGLES_3 14

CUSTOM_MARKER_TRIANGLES_4 15

CUSTOM_MARKER_TRIANGLES_5 16

CUSTOM_MARKER_COUNT 16

Table 94:

CustomObjectMarker

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 138

45.1.2 CustomType

The CustomType is used to represent the identifier of object that a symbol is attached to. The

enumeration has the following named values:

Name Value Description

INVALID_CUSTOM_TYPE 0

CUSTOM_TYPE_00 1

CUSTOM_TYPE_01 2

CUSTOM_TYPE_02 3

CUSTOM_TYPE_03 4

CUSTOM_TYPE_04 5

CUSTOM_TYPE_05 6

CUSTOM_TYPE_06 7

CUSTOM_TYPE_07 8

CUSTOM_TYPE_08 9

CUSTOM_TYPE_09 10

CUSTOM_TYPE_10 11

CUSTOM_TYPE_11 12

CUSTOM_TYPE_12 13

CUSTOM_TYPE_13 14

CUSTOM_TYPE_14 15

CUSTOM_TYPE_15 16

CUSTOM_TYPE_16 17

CUSTOM_TYPE_17 18

CUSTOM_TYPE_18 19

CUSTOM_TYPE_19 20

CUSTOM_TYPE_COUNT 20

Table 95: CustomType

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 139

45.1.3 ObjectFamily

The ObjectFamily is a deprecated method used to represent the type of object that a symbol is

attached to. ObjectType should be used instead, where possible. The enumeration has the

following named values:

Name Value Description

INVALID_FAMILY 0 This value represents a kind of object that is not

properly set.

UNKNOWN_FAMILY 1 This value is used when there is an object, but its

kind is not known.

BLOCK 2 This is the identifier used for blocks/cubs other

than the companion-cube

LIGHT_CUBE 3 This is the identifier used for the companion-cube

CHARGER 4 This is the identifier used for the home charging

station.

CUTSTOM_OBJECT 7 This is the identifier used for as custom object

definition.

OBJECT_FAMILY_COUNT 7

45.1.4 ObjectType

The ObjectType is used represent the type of object that a symbol is attached to. The enumeration

has the following named values:

Name Value Description

INVALID_OBJECT 0 This value represents an object id used when there

isn’t an object associated.

UNKNOWN_OBJECT 1 This value is used when there is an object, but it is

not recognized.

BLOCK_LIGHTCUBE1 2 This is the identifier used for the companion-cube

CHARGER_BASIC 6 This is the identifier used for the home charging

station.

FIRST_CUSTOM_OBJECT_TYPE 15 The custom objects all have types greater than or

equal to this.

Table 96: ObjectType

Enumeration

Table 97: ObjectType

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 140

45.2. EVENTS

These are the events that are sent to inform the application of an objects state (and availability).

45.2.1 ObjectEvent

The ObjectEvent event is sent (see Event message) when the state of an object has changed. The

structure has one (and only one) of the following fields:

Field Type Description

cube_connection_lost CubeConnectionLost This event is sent when cube no longer is connected

via Bluetooth LE.

robot_observed_object RobotObservedObject This even is sent the object is visually seen by

Vector.

object_available ObjectAvailable This event is sent when cube a Bluetooth LE

connection to the cube is established.

object_connection_state ObjectConnectionState The information about the Bluetooth LE identity of

the cube, and whether is connected (or not).

object_moved ObjectMoved The object has changed position.

object_stopped_moving ObjectStoppedMoving The object had change position previously, but has

now come to rest.

object_tapped ObjectTapped The cube was tapped.

object_up_axis_changed ObjectUpAxisChanged The object was rotated and has a new upward face.

45.2.2 ObjectAvailable

The ObjectAvailable event is sent (see section 45.2.1 ObjectEvent) when Vector has received

Bluetooth LE advertisements from the object (cube).

See also section 53.2.2 CubeConnectionLost

This event structure has the following fields:

Field Type Units Description

factory_id string The identifier for the cube. This is built into the

cube.

45.2.3 ObjectConnectionState

The ObjectConnectedState event is to “indicate that a cube has connected or disconnected to the

robot. This message will be sent for any connects or disconnects regardless of whether it

originated from us or underlying robot behavior.”

See also section 53.2.2 CubeConnectionLost

Table 98: ObjectEvent

JSON structure

Table 99:

ObjectAvailable JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 141

This event structure has the following fields:

Field Type Units Description

connected bool True if Vector has a Bluetooth LE connection with

the Cube.

factory_id string The identifier for the cube. This is built into the

cube.

object_id uint32 The identifier of the object that Vector is (or was)

connected to.

object_type ObjectType The type of object referred to.

45.2.4 ObjectMoved

The ObjectMoved event is sent (see section 45.2.1 ObjectEvent) when an object has changed its

position. The structure has the following fields:

Field Type Units Description

object_id uint32 The identifier of the object that moved.

timestamp uint32 The time that the event occurred on. The format

is milliseconds since Vector’s epoch.

45.2.5 ObjectStoppedMoving

The ObjectStoppedMoving event is sent (see section 45.2.1 ObjectEvent) when an object previously

identified as moving has come to rest. The structure has the following fields:

Field Type Units Description

object_id uint32 The identifier of the object that was moving.

timestamp uint32 The time that the event occurred on. The format

is milliseconds since Vector’s epoch.

45.2.6 ObjectUpAxisChanged

The ObjectUpAxis event is sent (see section 45.2.1 ObjectEvent) if the orientation of the object has

significantly changed, leaving it with a new face upward. The structure has the following fields:

Field Type Units Description

object_id uint32 The identifier of the object whose axis has

changed.

timestamp uint32 The time that the event occurred on. The format

is milliseconds since Vector’s epoch.

up_axis UpAxis The orientation of object, represented as which

axis is pointing upwards

Table 100:

ObjectConnectedState

JSON structure

Table 101:

ObjectMoved JSON

structure

Table 102:

ObjectStoppedMoving

JSON structure

Table 103:

ObjectUpAxis JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 142

The UpAxis is used represent the orientation of an object. The enumeration has the following

named values:

Name Value Description

INVALID_AXIS 0 The orientation of the object is not known.

X_NEGATIVE 1 The positive direction along the body’s x-axis is

upward.

X_POSITIVE 2 The negative direction along the body’s x-axis is

upward.

Y_NEGATIVE 3 The positive direction along the body’s y-axis is

upward.

Y_POSITIVE 4 The negative direction along the body’s y-axis is

upward.

Z_NEGATIVE 5 The positive direction along the body’s z-axis is

upward.

Z_POSITIVE 6 The negative direction along the body’s z-axis is

upward.

NUM_AXES 7

45.2.7 RobotObservedObject

The RobotObservedObject event is sent when “an object with [the] specified ID/Type was seen at a

particular location in the image and the world.” This event structure has the following fields:

Field Type Units Description

img_rect CladRect The position of the object within the vision image.

is_active uint32

object_family ObjectFamily Deprecated. “Use ObjectType instead to reason

about groupings of objects.”

object_id int32 The identifier of the object that has been seen.

Note that this is signed (int32 instead of uint32) for

internal compatibility reasons.

object_type ObjectType The type of object referred to.

pose PoseStruct The observed pose of this object. Optional.

timestamp uint32 The time that the object was most recently

observed. The format is milliseconds since

Vector’s epoch.

top_face_orientation_rad float radians “Angular distance from the current reported up

axis. “ “absolute orientation of top face, iff

isActive==true”

Table 104: UpAxis

Enumeration

Table 105:

RobotObservedObject

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 143

45.3. CREATE FIXED CUSTOM OBJECT

This command “creates a permanent custom [cube-shaped] object instance in the robot's world”

except this object has “no markers associated with it.” The object “will remain in the specified

pose as an obstacle forever (or until deleted).” The object can’t be observed, and won’t create any

events related to being observed. The fixed, custom object can “be used to make Vector aware of

objects and know to plot a path around them.”

Post: “/v1/create_fixed_custom_object”

45.3.1 Request

The CreateFixedCustomObjectRequest structure has the following fields:

Field Type Units Description

pose PoseStruct The position and orientation of this object.

x_size_mm float mm The size of the object that the marker symbol is on,

along the x-axis.

y_size_mm float mm The size of the object that the marker symbol is on,

along the y-axis.

z_size_mm float mm The size of the object that the marker symbol is on,

along the z-axis.

45.3.2 Response

The CreateFixedCustomObjectResponse structure has the following fields:

Field Type Description

object_id uint32 The object identifier assigned to this object.

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

Table 106:

CreateFixedCustomObje

ctRequest JSON

structure

Table 107:

CreateFixedCustomObje

ctResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 144

45.4. DEFINE CUSTOM OBJECT

“Creates a custom object with distinct custom marker(s)” on one or more its faces. This can create

a wall, a box, a cube (similar to a box, but each side is the same size as every other, and has the

same marker). Once the object has been created, “the robot will now detect the markers associated

with this object and send a RobotObservedObject message when they are seen. The markers must

be placed in the center of their respective sides.”

Note: “No instances of this object are added to the world until they have been seen.”

See also Create Fixed Custom Object, Delete Custom Objects

Post: “/v1/define_custom_object”

45.4.1 Request

The DefineCustomObjectRequest structure has the following fields:

Field Type Units Description

custom_type CustomType The object type to be assigned to this object.

is_unique bool If true, “there is guaranteed to be no more than

one object of this type present in the world at a

time.”

custom_box CustomBoxDefinition The definition of a box with different markers on

each side.

custom_cube CustomCubeDefinition The definition of a cube, with the same marker on

each side.

custom_wall CustomWallDefinition The definition of a flat wall with only a front side.

Note: only one of “custom_box,” “custom_cube,” or “custom_wall” can be used in the request.

Table 108:

DefineCustomObjectReq

uest JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 145

The CustomBoxDefinition “defines a custom object of the given size with the given markers

centered on each side.” The structure has the following fields:

Field Type Units Description

marker_back CustomObjectMarker The marker symbol used on the back surface of the

box. This marker must be unique (not used by any

of the other side’s on this box or in any other

shape).

marker_bottom CustomObjectMarker The marker symbol used on the bottom surface of

the box. This marker must be unique (not used by

any of the other side’s on this box or in any other

shape).

marker_front CustomObjectMarker The marker symbol used on the front surface of the

box. This marker must be unique (not used by any

of the other side’s on this box or in any other

shape).

marker_left CustomObjectMarker The marker symbol used on the left-hand side of

the box. This marker must be unique (not used by

any of the other side’s on this box or in any other

shape).

marker_right CustomObjectMarker The marker symbol used on the right-hand side of

the box This marker must be unique (not used by

any of the other side’s on this box or in any other

shape).

marker_top CustomObjectMarker The marker symbol used on the top surface of the

box. This marker must be unique (not used by any

of the other side’s on this box or in any other

shape).

marker_height_mm float mm The height of the marker symbol.

marker_width_mm float mm The width of the marker symbol.

x_size_mm float mm The size of the object, along the x-axis, that the

marker symbol is on.

y_size_mm float mm The size of the object, along the y-axis, that the

marker symbol is on.

z_size_mm float mm The width of the object, along the z-axis, that the

marker symbol is on.

The CustomCubeDefinition “defines a custom cube of the given size.” The structure has the

following fields:

Field Type Units Description

marker CustomObjectMarker The marker symbol used on all of the cube

surfaces; “the same marker [must] be centered on

all faces.”

marker_height_mm float mm The height of the marker symbol

marker_width_mm float mm The width of the marker symbol

size_mm float mm The height, width, and depth of the object that the

marker symbol is on.

Table 109:

CustomBoxDefinition

JSON structure

Table 110:

CustomCubeDefinition

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 146

The CustomWallDefinition “defines a custom wall of the given height and width... The wall's

thickness is assumed to be 1cm (and thus there are no markers on its left, right, top, or bottom).”

The structure has the following fields:

Field Type Units Description

marker CustomObjectMarker The marker symbol used on the wall surfaces; “the

same marker centered on both sides (front and

back)”

marker_height_mm float mm The height of the marker symbol

marker_width_mm float mm The width of the marker symbol

height_mm float mm The height of the object that the marker symbol is

on.

width_mm float mm The width of the object that the marker symbol is

on.

45.4.2 Response

The DefineCustomObjectResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

success bool True if the thumbnail was successfully retrieved;

otherwise there was an error.

Table 111:

CustomWallDefinition

JSON structure

Table 112:

DefineCustomObjectRe

sponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 147

45.5. DELETE CUSTOM OBJECTS

This command “causes the robot to forget about custom objects it currently knows about.” All

custom objects that match the given pattern are removed.

Post: “/v1/delete_custom_objects”

45.5.1 Request

The DeleteCustomObjectsRequest type has the following fields:

Field Type Description

mode CustomObjectDeletionMode The kind of custom objects to remove.

The CustomObjectDeletionMode is used to specify which kinds of custom objects should be deleted

from the internal database. The enumeration has the following named values:

Name Value Description

DELETION_MASK_UNKNOWN 0

DELETION_MASK_FIXED_CUSTO

M_OBJECTS
1 Delete the custom objects that are “fixed” – the

ones that don't have any marker symbols.

DELETION_MASK_CUSTOM_MARK
ER_OBJECTS

2 Delete the objects with marker symbols.

DELETION_MASK_ARCHETYPES 3 Deletes everything but the fixed objects and their

marker symbols.

45.5.2 Response

The DeleteCustomObjectsResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

Table 113:

DeleteCustomObjectsRe

quest JSON structure

Table 114:

CustomObjectDeletionM

ode Enumeration

Table 115:

DeleteCustomObjectsRe

sponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 148

46. ACTIONS AND BEHAVIOUR

Actions and “behaviors represent a complex task which requires Vector's internal logic to [carry

out]. This may include combinations of animation, path planning or other functionality.”

See also section 53 Cube, and section 59 Interactions with Objects, which covers actions/behaviors

that involve interacting with objects and faces.

Actions often have tags (an arbitrary value given to it by the SDK application), and have result

code. And action can be cancelled using this tag. Behaviors do not have tags.

Behaviors are part of the behavior tree, and can potentially submit other behaviors based on

prevailing conditions. See Chapter 27 for more detail on behaviors.

Behaviors are submitted at the priority level associated with the connection. If the connection has

released control, requested behaviors and actions are ignored. When control is requested, a priority

level is requested by the SDK application at the time. Behaviors requested by Vector’s internal AI

with a lower priority will be ignored; behaviors with a high priority will take control (causing the

SDK to lose control). By giving up control, or changing the control priority the SDK can

effectively cancel the behavior it requested.

Request control at the RESERVE_CONTROL priority level “can be used to suppress the ordinary

idle behaviors of the Robot and keep Vector still between SDK control instances. Care must be

taken when blocking background behaviors, as this may make Vector appear non-responsive.”

See chapter 27 Behaviors for a description of behaviors and priorities.

46.1. ENUMERATIONS

46.1.1 ActionTagConstants

This is the range of numbers in which we can assign an identifier for the action so that we can

cancel it later.

Name Value Description

INVALID_SDK_TAG 0

FIRST_SDK_TAG 2000001 An assigned action tag must be equal to or greater

than this value.

LAST_SDK_TAG 3000000 An assigned action tag must be less than or equal to

this value.

46.1.2 BehaviorResults

The BehaviorResults is used TBD. The enumeration has the following named values:

Name Value Description

BEHAVIOR_INVALID_STATE 0

BEHAVIOR_COMPLETE_STATE 1

BEHAVIOR_WONT_ACTIVATE_STATE 2

Table 116:

ActionTagConstants

Enumeration

Table 117:

BehaviorResults

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 149

46.2. EVENTS

46.2.1 FeatureStatus

The FeatureStatus status event is sent as Vector’s behavior focus changes. The structure has the

following fields:

Field Type Description

feature_name string The current active behaviour (feature). See

Appendix I, table Table 637: The AI behaviour

features for a list and description.

source string Where the direction to do this behavior came from:

“Voice”, “App”, “AI”, “Unknown”. Voice is for

responses to voice commands and intents; “App” is

for application submitted intents; AI is behaviors

initiated by the high-level AI.

Note: for Vector-OS feature flags, see section 57 Features & Entitlements.

46.2.2 StimulationInfo

The StimulationInfo event is used report events that impact Vector’s emotion state and overall

stimulation level. The structure has the following fields:

Field Type Units Description

accel float mm/sec2 The acceleration at the time of the stimulation.

emotion_events string[] The list of event names related to the emotion.

The names of emotion events and their description

can be found in Appendix K Table 641: The

emotion event names. Optional.

max_value float The minimum stimulation value. Typically 1

min_value float The maximum stimulation value. Typically 0

value float The stimulation value after applying the events.

value_before_event float The stimulation value before the event(s).

“matches value if there were no emotion events”

velocity float mm/sec The speed at the time of the stimulation.

Table 118:

FeatureStatus JSON

structure

Table 119:

StimulationInfo JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 150

46.3. STRUCTURES

46.3.1 ActionResults

 “The possible results of running an action.” The structure has the following fields:

Field Type Description

code ActionResultCode The results

The ActionResultCode is used to provide “the possible results of running an action.”

Name Value Description

ACTION_RESULT_SUCCESS 0 “Action completed successfully.”

ACTION_RESULT_RUNNING 16777216 “Action is still running.”

ACTION_RESULT_CANCELLED_WHILE_RUNN
ING

33554432 “Action was cancelled by SDK request”

NOT_STARTED 33554433 “Initial state of an Action to indicate it has not yet

started.”

ABORT 50331648 “Action aborted itself (e.g. had invalid attributes, or

a runtime failure).”

ANIM_ABORTED 50331649 “Animation Action aborted itself (e.g. there was an

error playing the animation).”

BAD_MARKER 50331650 “There was an error related to vision markers.”

BAD_MESSAGE_TAG 50331651 “There was a problem related to a subscribed or

unsupported message tag”

BAD_OBJECT 50331652 “There was a problem with the Object ID provided

(e.g. there is no Object with that ID).”

BAD_POSE 50331653 “There was a problem with the Pose provided.”

BAD_TAG 50331654 “The SDK-provided tag was bad.”

CHARGER_UNPLUGGED_ABORT 50331655 “Vector is on the charger but cannot sense the

contacts. Charger may be unplugged.”

CLIFF_ALIGN_FAILED_TIMEOUT 50331656

CLIFF_ALIGN_FAILED_NO_TURNING 50331657

CLIFF_ALIGN_FAILED_OVER_TURNING 50331658

CLIFF_ALIGN_FAILED_NO_WHITE 50331659

CLIFF_ALIGN_FAILED_STOPPED 50331660

FAILED_SETTING_CALIBRATION 50331661 “Shouldn't occur outside of factory.”

FOLLOWING_PATH_BUT_NOT_TRAVERSING 50331662 “There was an error following the planned path.”

INTERRUPTED 50331663 “The action was interrupted by another Action or

Behavior.”

INVALID_OFF_TREADS_STATE 50331664 “The robot ended up in an "off treads state" not

valid for this action (e.g. the robot was placed on its

back while executing a turn).”

MISMATCHED_UP_AXIS 50331665 “The Up Axis of a carried object doesn't match the

desired placement pose.”

Table 120:

ActionResults JSON

structure

Table 121:

ActionResultCode

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 151

NO_ANIM_NAME 50331666 “No valid Animation name was found.”

NO_DISTANCE_SET 50331667 “An invalid distance value was given.”

NO_FACE 50331668 “There was a problem with the Face ID (e.g. Vector

doesn't know where it is).”

NO_GOAL_SET 50331669 “No goal pose was set.”

NO_PREACTION_POSES 50331670 “No pre-action poses were found (e.g. could not get

into position).”

NOT_CARRYING_OBJECT_ABORT 50331671 “No object is being carried, but the action requires

one.”

NOT_ON_CHARGER_ABORT 50331672 “Vector is expected to be on the charger, but is

not.”

NULL_SUBACTION 50331673 “No sub-action was provided.”

PATH_PLANNING_FAILED_ABORT 50331674 “Vector was unable to plan a path.”

PICKUP_OBJECT_UNEXPECTEDLY_MOVING 50331675 “The object that Vector is attempting to pickup is

unexpectedly moving (e.g it is being moved by

someone else).”

SEND_MESSAGE_TO_ROBOT_FAILED 50331676 “Shouldn't occur in SDK usage.”

STILL_CARRYING_OBJECT 50331677 “Vector is unexpectedly still carrying an object.”

TIMEOUT 50331678 “The Action timed out before completing

correctly.”

TRACKS_LOCKED 50331679 “One or more movement tracks (Head, Lift, Body,

Face, Backpack Lights, Audio) are already being

used by another Action.”

UNEXPECTED_DOCK_ACTION 50331680 “There was an internal error related to an

unexpected type of dock action.”

UNKNOWN_TOOL_CODE 50331681 “Shouldn't occur outside of factory.”

UPDATE_DERIVED_FAILED 50331682 “There was a problem in the subclass's update on

the robot.”

VISUAL_OBSERVATION_FAILED 50331683 “Vector did not see the expected result (e.g. unable

to see cube in the expected position after a related

action).”

SHOULDNT_DRIVE_ON_CHARGER 50331684 “Action is not permitted on the charger.”

RETRY 67108864 “The Action failed, but may succeed if retried.”

DID_NOT_REACH_PREACTION_POSE 67108865 “Failed to get into position.”

FAILED_TRAVERSING_PATH 67108866 “Failed to follow the planned path.”

LAST_PICK_AND_PLACE_FAILED 67108867 “The previous attempt to pick and place an object

failed.”

MOTOR_STOPPED_MAKING_PROGRESS 67108868 “The required motor isn't moving so the action

cannot complete.”

NOT_CARRYING_OBJECT_RETRY 67108869 “Not carrying an object when it was expected, but

may succeed if the action is retried.”

NOT_ON_CHARGER_RETRY 67108870 “Driving onto the charger failed, but may succeed

if the action is retried.”

PATH_PLANNING_FAILED_RETRY 67108871 “Vector was unable to plan a path, but may succeed

if the action is retried.”

PLACEMENT_GOAL_NOT_FREE 67108872 “There is no room to place the object at the desired

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 152

destination.”

PICKUP_OBJECT_UNEXPECTEDLY_NOT_MOV
ING

67108873 “The object that Vector thought he was lifting

didn't start moving, so he must have missed.”

STILL_ON_CHARGER 67108874 “Vector failed to drive off the charger.”

UNEXPECTED_PITCH_ANGLE 67108875 “Vector's pitch is at an unexpected angle for the

Action.”

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 153

46.4. BEHAVIOR CONTROL AND ASSUME BEHAVIOR CONTROL

These commands are used to setup the ability to submit actions and behaviors into Vector’s AI

system. This control is needed “to be able to directly control Vector's motors, override his screen,

play an animation, etc.”

The request specifies a priority level. After control is granted, Vector’s AI will suppress internal

behaviors with a lower priority. When a behavior is commanded by the SDK, it will be associated

with the priority level selected here. Note: the priority level is represented by a number where

lower values represent higher priorities, and higher values represent lower priorities. See Chapter

28 for a detailed description of behavior priorities.

There are two entry points: AssumeBehaviorControl and BehaviorControl. Both employ the same

request and response message structures. The response is a stream that includes information when

the control was acquired, and lost.

Post: “/v1/assume_behavior_control”

46.4.1 Request

The BehaviorControlRequest is used to request control of Vector’s behavior stream, and to release

it. This structure includes one (and only one) of the following fields:

Field Type Description

control_release {} This is used to when the application is releasing

control back to Vector; the value is an empty

dictionary.

control_request ControlRequest This is used when the application is requesting

control of Vector; see below for a description.

The ControlRequest is used to request control of the behavior system at a given priority. This

structure has the following fields:

Field Type Description

priority Priority This is the priority level that should be employed

for requested behaviors; internal behaviors with a

priority lower than this will be suppressed.

The Priority enumeration has the following named priority level values:

Name Value Description

UNKNOWN 0 “Unknown priority. Used for versions that doesn’t

understand old priority levels.”

OVERRIDE_BEHAVIORS 10 “Highest priority level. Suppresses most automatic

physical reactions, use with caution.”

DEFAULT 20 “Normal priority level. Directly under mandatory

physical reactions.”

RESERVE_CONTROL 30 This priority level is “used to disable idle

behaviors.” It is intended to “enable long-running

SDK control between script executions. Not.. for

regular behavior control.”

Table 122:

BehaviorControlRequest

JSON structure

Table 123:

ControlRequest JSON

structure

Table 124: Priority level

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 154

46.4.2 Response

The response is a stream of BehaviorControlResponse structures that includes information when the

control was acquired, and lost. This structure includes one (and only one) of the following fields:

Field Type Units Description

control_granted_response {} The application is now in control of the behavior

stream and is “free to run any actions and

behaviors they like. Until a ControlLostResponse

is received, they are directly in control of Vector's

behavior system.”

control_lost_event {} “This informs the user that they lost control of the

behavior system... to a higher priority behavior.”

“This control can be regained through another”

BehaviorControlRequest.

keep_alive KeepAlivePing “Used by Vector to verify the connection is still

alive.”

reserved_control_lost_event {} The “behavior system lock has been lost to

another connection.” “This control can be

regained through another”

BehaviorControlRequest. This is sent when the

SDK is at RESERVE_CONTROL priority level.

Table 125:

BehaviorControlRespons

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 155

46.5. CANCEL ACTION BY ID TAG

Cancel “a previously-requested action.”

Post: “/v1/cancel_action_by_id_tag”

46.5.1 Request

The CancelActionByIdTagRequest structure has the following fields:

Field Type Description

id_tag uint32 “Use the id_tag provided to the action request”

46.5.2 Response

The CancelActionByIdTagResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

46.6. CANCEL BEHAVIOR

Cancels the current running SDK behavior. Note this is only in version 1.7 and later.

Post: “/v1/cancel_behavior”

46.6.1 Request

The CancelBehaviorRequest structure has no fields.

46.6.2 Response

The CancelBehaviorResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

Table 126:

CancelActionByIdTagRe

quest JSON structure

Table 127:

CancelActionByIdTagRe

sponse JSON structure

Table 128:

CancelBehaviorRespons

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 156

46.7. LOOK AROUND IN PLACE

This has Vector turn around (in place) and see what is around him. See also section 56.2.6

RobotObservedFace, section 45.2.7 RobotObservedObject

Post: “/v1/look_around_in_place”

46.7.1 Request

The LookAroundInPlaceRequest structure has no fields.

46.7.2 Response

The LookAroundInPlaceResponse structure has the following fields:

Field Type Description

result BehaviorResults

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

Table 129:

LookAroundInPlaceResp

onse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 157

47. ALEXA

47.1. ENUMERATIONS

47.1.1 AlexaAuthState

The AlexaAuthState is used represent how far in the Alexa Voice Services authorization process

Vector is. The enumeration has the following named values:

Name Value Description

ALEXA_AUTH_INVALID 0 “Invalid/error/versioning issue”

ALEXA_AUTH_UNINITIALIZED 1 “Not opted in, or opt-in attempted but failed”

ALEXA_AUTH_REQUESTING_AUTH 2 “Opted in, and attempting to authorize”

ALEXA_AUTH_WAITING_FOR_CODE 3 “Opted in, and waiting on the user to enter a code”

ALEXA_AUTH_AUTHORIZED 4 “Opted in, and authorized / in use”

47.2. EVENTS

47.2.1 AlexaAuthEvent

The AlexaAuthEvent is used to post updates to SDK application (via the Event message) when the

authorization with Alexa Voice Services change. The structure has the following fields:

Field Type Description

auth_state AlexaAuthState

extra string

Table 130:

AlexaAuthState

Enumeration

Table 131:

AlexaAuthEvent JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 158

47.3. ALEXA AUTHORIZATION STATE

This is used to find out whether Vector has been authenticated and authorized to use Alexa Voice

Services.

Post: “/v1/alexa_auth_state”

47.3.1 Request

The AlexaAuthStateRequest structure has no fields.

47.3.2 Response

The AlexaAuthStateResponse structure has the following fields:

Field Type Description

auth_state AlexaAuthState

extra string

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

47.4. ALEXA OPT IN

This is used to enable Alexa Voice Services on Vector.

Post: “/v1/alexa_opt_in”

47.4.1 Request

The AlexaOptInRequest structure has the following fields:

Field Type Description

opt_in bool True, if Vector should employ Alexa Voice

services; otherwise Vector should not.

47.4.2 Response

The AlexaOptInResponse structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 132:

AlexaAuthStateRespons

e JSON structure

Table 133:

AlexaOptInRequest

JSON structure

Table 134:

AlexaOptInResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 159

48. ANIMATION

Some things related to animation but we haven’t figured it all out yet.

48.1. STRUCTURES

48.1.1 Animation

This structure is used to provide the name of an animation. The Animation structure has the

following fields:

Field Type Description

name string “The name of a given animation”

48.1.2 AnimationTrigger

This structure is used to provide the name of an animation group (aka its trigger name). The

AnimationTrigger structure has the following fields:

Field Type Description

name string “The name of a given animation trigger”

48.2. LIST ANIMATIONS

“Constructs and returns a list of animations.”

Post: “/v1/list_animations”

48.2.1 Request

The ListAnimationsRequest has no fields.

48.2.2 Response

The ListAnimationsResponse structure has the following fields:

Field Type Description

animation_names Animation[] “The animations that Vector knows..”

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 135: Animation

JSON structure

Table 136:

AnimationTrigger JSON

structure

Table 137:

ListAnimationsResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 160

48.3. LIST ANIMATION TRIGGERS

“Constructs and returns a list of animation triggers.”

Post: “/v1/list_animation_triggers”

48.3.1 Request

The ListAnimationTriggerssRequest has no fields.

48.3.2 Response

The ListAnimationTriggersResponse structure has the following fields:

Field Type Description

animation_tigger_names AnimationTrigger[] “The animations triggers that Vector knows.”

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

48.4. PLAY ANIMATION

“Requests that Vector play an animation.”

48.4.1 Request

The PlayAnimationRequest structure has the following fields:

Field Type Units Description

animation Animation “The animation to play.”

ignore_body_track bool “Ignore any movement of Vector's body when

playing the animation.”

ignore_head_track bool “Ignore any movement of Vector's head when

playing the animation.”

ignore_lift_track bool “Ignore any movement of Vector's lift when

playing the animation.”

loops uint32 “The number of times to play the animation in a

row.”

48.4.2 Response

The PlayAnimationResponse structure has the following fields:

Field Type Description

animation Animation “The animation that the robot executed.”

result BehaviorResults “Information on whether the animation played

successfully.”

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 138:

ListAnimationTriggersR

esponse JSON structure

Table 139:

PlayAnimationRequest

JSON structure

Table 140:

PlayAnimationResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 161

48.5. PLAY ANIMATION TRIGGER

“Requests that Vector play an animation trigger.”

48.5.1 Request

The PlayAnimationTriggerRequest structure has the following fields:

Field Type Units Description

animation_trigger AnimationTrigger “The animation trigger to play.”

ignore_body_track bool “Ignore any movement of Vector's body when

playing the animation.”

ignore_head_track bool “Ignore any movement of Vector's head when

playing the animation.”

ignore_lift_track bool “Ignore any movement of Vector's lift when

playing the animation.”

loops uint32 “The number of times to play the animation in a

row.”

use_lift_safe bool “Automatically ignore the lift track if Vector is

currently carrying an object.”

48.5.2 Response

See the response for Play Animation.

Table 141:

PlayAnimationTriggerRe

quest JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 162

49. ATTENTION TRANSFER

Note: this attention event is unlikely to be sent and the response to getting the latest attention

transfer is likely to invalid or empty, as the “AttentionTransfer” feature is disabled in all software

releases.

49.1. EVENTS

49.1.1 AttentionTransfer

This event is sent when TBD. The AttentionTransfer structure has the following fields:

Field Type Description

reason AttentionTransferReason The reason that the attention was changed.

seconds_ago float How long ago the attention was changed.

The AttentionTransferReason is used to represent why the attention was transferred. The

enumeration has the following named values:

Name Value Description

Invalid 0

NoCloudConnection 1

NoWifi 2

UnmatchedIntent 3

Table 142:

AttentionTransfer

JSON structure

Table 143:

AttentionTransferReaso

n Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 163

49.2. GET LATEST ATTENTION TRANSFER

Part of the behaviour component

Post: “/v1/get_latest_attention_transfer”

49.2.1 Request

The GetLatestAttentionTransferRequest has no fields.

49.2.2 Response

The GetLatestAttentionTransferResponse has the following fields:

Field Type Description

latest_attention_transfer LatestAttentionTransfer

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

The LatestAttentionTransfer structure has the following fields:

Field Type Description

attention_transfer AttentionTransfer When and why the attention was changed.

Table 144:

GetLatestAttentionTran

sferResponse JSON

structure

Table 145:

LatestAttentionTransfer

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 164

50. AUDIO

This section describes events and commands related to Vectors audio input and output.

50.1. ENUMERATIONS

50.1.1 AudioProcessingMode

The AudioProcessingMode is used to represent the different ways that Vector can process the

microphone audio. The enumeration has the following named values:

Name Value Description

AUDIO_UNKNOWN 0 “error value”

AUDIO_OFF 1 The audio settings from the HTTPS API will not be

used.

AUDIO_FAST_MODE 2 The spatial audio processing is disabled; the sound

is used from a single microphone. This has the

lowest processing overhead.

AUDIO_DIRECTIONAL_MODE 3 Use “beamforming support for focusing on specific

direction – [this] sounds cleanest”

AUDIO_VOICE_DETECT_MODE 4 Use “multi-microphone non-beamforming. [This

is] best for voice detection programs.”

50.1.2 MasterVolumeLevel

The MasterVolumeLevel is used to control the volume of audio played by Vector, including text to

speech. It is used in the MasterVolumeLevelRequest. The enumeration has the following named

values:

Name Value Description

VOLUME_LOW 0

VOLUME_MEDIUM_LOW 1

VOLUME_MEDIUM 2

VOLUME_MEDIUM_HIGH 3

VOLUME_HIGH 4

50.1.3 UtteranceState

The UtteranceState is used to represent the state of audio playback by Vector, including text to

speech. It is used in the SayTextResponse. The enumeration has the following named values:

Name Value Description

INVALID 0

GENERATING 1 Vector is generating the audio and other animation

for the text to speech.

Table 146:

AudioProcessingMode

Enumeration

Table 147:

MasterVolumeLevel

Enumeration

Table 148:

UtteranceState

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 165

READY 2 Vector has completed generating the audio and

animation.

PLAYING 3 Vector is playing the speech and related animation.

FINISH 4 Vector has finished playing the audio and

animation.

50.2. EVENTS

The following events are sent in the Event message. When a person speaks the wake word, the

WakeWordBegin event will be sent, followed by the WakeWordEnd event and possibly a

UserIntent event.

50.2.1 AudioSendModeChanged

Note: this event is not available; it was defined in the API protocol, but never implemented and

removed. It is reproduced here for information purposes; it may be in future releases.

This event is “sent when the robot changes the mode it's processing and sending audio” in.

See Chapter 17, section 76.2 Spatial audio processing for more information

The event structure has the following fields:

Field Type Description

mode AudioProcessingMode The requested audio processing mode.

50.2.2 UserIntent

The UserIntent event is sent by Vector when an intent is received (from the cloud), after a person

has said the wake word and spoken. The UserIntent structure has the following fields:

Field Type Description

intent_id31 uint32 The identifier for the intent. See Appendix J Table

640: Mapping of different intent names for an

enumeration.

json_data string The parameters as a JSON formatted string. This

may be empty if there is not additional information.

50.2.3 WakeWord

This event is sent when the wake word is heard, and then when the cloud response is received. The

WakeWord structure has the following fields, only one is present at any time:

Field Type Description

wake_word_begin WakeWordBegin This is sent when the wake word is heard. The

structure has no contents.

31 The use of an enumeration rather than a string is unusual here, and seems limiting.

Table 149:

AudioSendModeChanged

JSON structure

Table 150: UserIntent

JSON structure

Table 151: WakeWord

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 166

wake_word_end WakeWordEnd This is sent when the response (and potential

intent) is received from the cloud. This is sent

before the UserIntent event (if any).

The WakeWordEnd structure has the following fields:

Field Type Description

intent_heard bool True if a sentence was recognized with an

associated intent; false otherwise.

intent_json string The intent and parameters as a JSON formatted

string. This is empty if an intent was not heard

(intent_heard will be false), or if the client does not

have control. In the later case, a UserIntent event

with the intent JSON data will be sent.

Table 152:

WakeWordEnd JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 167

50.3. APP INTENT

This command is allows the mobile application or SDK application to send an intent to Vector.

See also section 50.2.2 UserIntent, and section 50.2.3 WakeWord

Post: “/v1/app_intent”

50.3.1 Request

The AppIntentRequest structure has the following fields:

Field Type Description

intent string The name of the intent to request; Vector

(probably) will only honor the intents listed in the

“App Intent” column in Appendix J, Table 640:

Mapping of different intent names

param string The parameters for the intent. This is usually a

JSON formatted string. This can be empty if the

intent does not require any additional information.

This intent_meet_victor intent has the parameter following fields:

Field Type Units Description

param

The intent_clock_settimer intent parameter isn’t used. Instead the length of the param is used as

the number of seconds to set the timer for.

50.3.2 Response

The AppIntentResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why

it was unable to be carried out.

Table 153:

AppIntentRequest

JSON structure

Table 154:

intent_meet_victor

parameters

Table 155:

AppIntentResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 168

50.4. AUDIO FEED (FROM THE MICROPHONES)

Note: this command is not available; it was defined in the API protocol, but never implemented

and removed. It is reproduced here for information purposes; it may be in future releases.

This command is used to request an audio feed from Vector.

See Chapter 18, section 76.2 Spatial audio processing for more information

Post: “/v1/audio_feed”

50.4.1 Request

This AudioFeedRequest has no fields.

50.4.2 Response

The response is a stream of the following AudioFeedResponse structure. This structure has the

following fields:

Field Type Description

direction_strengths bytes “Histogram data of which directions this audio

chunk came from.”

group_id uint32 “The index of this audio feed response”

noise_floor_power uint32 The background noise level, as a “power value,

convert to db with log10(value)”

robot_time_stamp uint32 The “robot time at the transmission of this audio

sample group”

signal_power bytes The stream of sound that Vector hears, as a “mono

audio amplitude samples”. This is 1600 “16-bit

little-endian PCM audio” samples, at 11025

samples/sec.

source_confidence uint32 The “accuracy of the calculated source_direction”

source_direction uint32 0-11: The index of the direction that the voice or

key sound is coming.

12: There is no identifiable sound or the direction

cannot be determined.

Table 156:

AudioFeedResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 169

50.5. AUDIO PROCESSING MODE

Note: this command is not available; it was defined in the API protocol, but never implemented

and removed. It is reproduced here for information purposes; it may be in future releases.

This command is used to “request how the robot should process and send audio.” Specifically it

can turn off the audio processing, and enable or disable the spatial audio processing.

See Chapter 18, section 76.2 Spatial audio processing for more information

50.5.1 Request

This AudioSendModeRequest has the following fields:

Field Type Description

mode AudioProcessingMode The requested audio processing mode.

50.5.2 Response

There is no response.

Table 157:

AudioSendModeRequest

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 170

50.6. EXTERNAL AUDIO STREAM PLAYBACK

This command is used to stream sound files to Vector to play on his speaker. The audio is sent as

single channel (mono) 16-bit little-endian PCM (i.e. without compression or other format) at a

sample rate between 8000 samples/sec to 16205 samples/sec.

The audio is sent by:

1. Setting up the audio playback, by sending the “audio_stream_prepare” substructure with the

audio rate and value

2. Sending the audio data in chunks (up to 1024 bytes, or 512 samples) using the

“audio_stream_chunk” structure

3. repeating #2 until all of the sound data has been sent

4. Sending the “audio_stream_complete” or “audio_stream_cancel” to end the playback.

50.6.1 Request

The ExternalAudioStreamRequest is used to stream a chunk of audio to Vector. This structure has

one (and only one) of the following fields:

Field Type Description

audio_stream_cancel {} “Cancel a playing external robot audio stream”

audio_stream_chunk ExternalAudioStreamChu
nk

“Send chunk of audio data to stream on robot.”

audio_stream_complete {} “Send notification of last chunk of audio sent to

robot”

audio_stream_prepare ExternalAudioStreamPrep
are

This is used to set up the audio channel, with the

sample rate and playback volume.

The ExternalAudioStreamPrepare structure has following fields:

Field Type Description

audio_frame_rate uint32 The sample rate for the audio. This must be in the

range of 8000 to 16025 samples/sec.

audio_volume uint32 The volume to play the audio at. 0-100

The ExternalAudioStreamChunk structure has following fields:

Field Type Description

audio_chunk_samples byte[] The audio samples, encoded as 16-bit values in

little-endian order. This must be 1024 or few

bytes

audio_chunk_size_bytes32 uint32 The number of bytes sent; the max is 1024 (i.e. a

max of 512 samples).

32 I am curious. Why does this field exist? The array intrinsically knows it size…

Table 158:

ExternalAudioStreamRe

quest JSON structure

Table 159:

ExternalAudioStreamPr

epare JSON structure

Table 160:

ExternalAudioStreamCh

unk JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 171

50.6.2 Response

The ExternalAudioStreamResponse is provides the response to streamed a audio chunk. This

structure has one (and only one) of the following fields:

Field Type Description

audio_stream_playback_complete {} “Audio has been played on the Robot”

audio_stream_playback_failyer33 {} There was an error playing the audio.

audio_stream_buffer_overrun ExternalAudioStreamBuff
erOverrun

“Audio has been sent to robot that would overrun

the memory buffer”

The ExternalAudioStreamBufferOverrun structure has following fields:

Field Type Description

audio_samples_played uint32 The number of samples that were played.

audio_samples_sent uint32 The number of audio samples that were sent [To

Vector? To the audio subsystem?]

33 Yes, that mis-spelling is correct

Table 161:

ExternalAudioStreamRe

sponse JSON structure

Table 162:

ExternalAudioStreamBu

fferOverrun JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 172

50.7. MASTER VOLUME

This command is used to set the volume of Vector’s audio playback and sound effects.

50.7.1 Request

The MasterVolumeResponse has the following fields:

Field Type Description

volume_level MasterVolumeLevel This is used to set the volume of Vector’s audio

playback.

50.7.2 Response

The MasterVolumeResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 163:

MasterVolumeRequest

JSON structure

Table 164:

MasterVolumeResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 173

50.8. SAY TEXT

This command is used to request the state of Vector speak the given text.

Post: “/v1/say_text”

50.8.1 Request

The SayTextRequest structure has the following fields:

Field Type Units Description

duration_scalar float ratio This controls the speed at which Vector speaks.

1.0 is normal rate, less than 1 increases the speed

(e.g. 0.8 causes Vector to speak in just 80% of the

usual time), and a value larger than one slows the

speed (e.g. 1.2 causes Vector to take 120% of the

usual time to speak). Allowed range is 0.5..20.0.

Default: 1.0

pitch_scalar float Negative values lower the pitch, higher values raise

the pitch. Allowed range is -1.0..1.0 Default: 0.0.

Note: this field is optional, and available only in

1.7 or later versions.

text string The text (the words) that Vector should say.

use_vector_voice bool True if the text should be spoken in “Vector's robot

voice; otherwise, he uses a generic human male

voice.”

50.8.2 Response

The SayTextResponse structure has the following fields:

Field Type Description

state UtteranceState Where in the speaking process Vector is currently.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

TBD: are multiple responses sent as the task progresses?

Table 165:

SayTextRequest JSON

structure

Table 166:

SayTextResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 174

51. BATTERY

See section 44.1.2 RobotStatus for a flag indicating that Vector is charging.

See section 59 Interactions with Objects for actions to drive onto and off of the charger.

51.1. ENUMERATIONS

The BatteryLevel enumeration is located in Chapter 8, Power Management, Table 14: BatteryLevel

codes as they apply to Vector

51.2. BATTERY STATE

This command is used to request the state of Vector’s battery and the cube battery. The state

includes its voltage, and whether Vector is charging.

Post: “/v1/battery_state”

51.2.1 Request

No parameters

51.2.2 Response

The BatteryStateResponse structure has the following fields:

Field Type Units Description

battery_level BatteryLevel The interpretation of the battery level.

battery_volts float volts The battery voltage.

cube_battery CubeBatteryLevel The status of the companion Cube’s battery.

is_on_charger_platform bool True if Vector is on his “home,” aka charger.

is_charging bool True if Vector is charging, false otherwise.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

suggested_charger_sec float seconds Suggested amount of time to charge.

Table 167:

BatteryStateResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 175

52. CONNECTION

This section describes the events and commands used to establish and maintain a connection with

Vector. This includes the ability to get the versions of the connection protocol, ant the software

used.

52.1. EVENTS

52.1.1 ConnectionResponse

The ConnectionResponse structure has the following fields:

Field Type Description

is_primary bool

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

52.1.2 Event

The Event structure is to deliver messages that some event has occurred. It is received in periodic

response to the part of the Event Stream command. All the events are carried in this one has one

(and only) of the following fields:

Field Type Description

alexa_auth_event AlexaAuthEvent

attention_transfer AttentionTransfer Not implemented?

camera_settings_update CameraSettingsUpdate This event is sent when the camera exposure

settings change.

check_update_status_response CheckUpdateStatusRespo
nse

This event is sent when the update status has

changed.

connection_response ConnectionResponse

cube_battery CubeBattery This event is sent when the cube’s battery level

has changed.

jdocs_changed JdocsChanged This event is sent when Vector’s preference

settings have changed.

keep_alive KeepAlivePing “Used by Vector to verify the connection is still

alive.”

mirror_mode_disabled MirrorModeDisabled This event is sent when the display system has

disabled mirror mode.

object_event ObjectEvent This event is sent when an object is seen, tapped,

lost, moved, a connection was established or lost.

onboarding Onboarding

photo_taken PhotoTaken This event is sent when a photograph has been

taken.

robot_state RobotState This event is regularly sent to give the status of

the robot.

Table 168:

ConnectionResponse

JSON structure

Table 169: Event JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 176

robot_changed_observed_face_id RobotChangedObservedF
aceID

This event is sent when Vector recognizes a face.

robot_erased_enrolled_face RobotErasedEnrolledFace This event is sent when a named face is removed

from the database.

robot_observed_face RobotObservedFace This event is sent when a face is seen.

robot_observed_motion RobotObservedMotion This event is sent when some visual motion is

seen.

robot_renamed_enrolled_face RobotRenamedEnrolledFa
ce

This event is sent when the name of a face is

changed.

stimulation_info StimulationInfo This event is sent when stimulation from internal

or external events is received.

time_stamped_status TimeStampedStatus

unexpected_movement Unexpected Movement This event is sent when Vector’s body moves in a

way that was not expected.

user_intent UserIntent This event is sent when a user intent has been

received and is being acted upon.

vision_modes_auto_disabled VisionModesAutoDisabled This event is sent when the vision system has

disabled further updates.

wake_word WakeWord This event is sent when the wake word has been

heard.

52.1.3 KeepAlivePing

This is “a null message used by streams to verify that the client is still connected.” This message

has no fields.

52.1.4 TimeStampedStatus

The TimeStampedStatus structure has the following fields:

Field Type Description

status Status

timestamp_utc uint32 The time that the status occurred on. The format is

unix time: seconds since 1970, in UTC.

The Status structure has one (and only one) of the following fields:

Field Type Description

face_enrollment_completed FaceEnrollmentComplete

feature_status FeatureStatus This event is sent when the high-level AI changes

Vector’s behavior.

meet_victor_face_scan_complete Meet Victor Face Scan
Complete

meet_victor_face_scan_started Meet Victor Face Scan
Started

Table 170:

TimeStampedStatus

JSON structure

Table 171: Status JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 177

52.2. EVENT STREAM

This command is used to request a stream of events from Vector.

Post: “"/v1/event_stream”

Get: “"/v1/event_stream”

52.2.1 Request

The EventRequest has the following fields:

Field Type Description

black_list FilterList The list of events to not include. ?

connection_id string

white_list FilterList The list of events to include.

The FilterList structure has the following fields:

Field Type Description

list string[] A list of events

52.2.2 Response

The response is a stream of EventResponse structures. These have the following fields:

Field Type Description

event Event The event that occurred. This structure is described

above in the subsection Eents

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 172:

EventRequest JSON

structure

Table 173: FilterList

JSON structure

Table 174:

EventResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 178

52.3. PROTOCOL VERSION

“Checks the supported protocol version by passing in the client version and minimum host version

and receiving a response to see whether the versions are supported.”

Post: “/v1/protocol_version”

“The valid versions of the protocol. Protocol versions are updated when messages change

significantly: new ones are added and removed, fields deprecated, etc. The goal is to support as

many old versions as possible, only bumping the minimum when there is no way to handle a prior

version.”

52.3.1 Request

The ProtocolVersionRequest has the following fields:

Field Type Description

client_version int64 The version of the protocol that the client is using.

min_host_version int64 The minimum version level of the protocol that

robot should support.

52.3.2 Response

The ProtocolVersionResponse has the following fields:

Field Type Description

host_version int64 The version of the protocol that the robot supports.

result Result Whether or not the protocol version supported by

the robot is compatible with the client. See below.

The Result is used to indicate whether the client version is supported. The enumeration has the

following named values:

Name Value Description

SUPPORTED 1 The protocol supports the client version and the

minimum host (robot) version of the protocol.

UNSUPPORTED 0 The protocol is unable to support the client; either

the client version is not supported, or the host is

unable to support a compatible version of the

protocol.

Table 175:

ProtocolVersionRequest

JSON structure

Table 176:

ProtocolVersionRespon

se JSON structure

Table 177: Result

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 179

52.4. SDK INITIALIZATION

“SDK-only message to pass version info for device OS, Python version, etc.”

Post: “/v1/sdk_initialization”

52.4.1 Request

The SDKInitializationRequest has the following fields:

Field Type Description

cpu_version string The CPU model that the client (SDK) is using;

informational only.

os_version string The version of operating system that the client

(SDK) is using; informational only.

python_implementation string

python_version string The version of python that the client (SDK) is

using. Informational only.

sdk_module_version string The version of the SDK software that the client is

using.

52.4.2 Response

The SDKInitializationResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 178:

SDKInitializationReques

t JSON structure

Table 179:

SDKInitializationRespon

se JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 180

52.5. USER AUTHENTICATION

This command is used to authenticate

Post: “/v1/user_authentication”

52.5.1 Request

The UserAuthenticationRequest has the following fields:

Field Type Description

client_name bytes

user_session_id bytes

52.5.2 Response

The UserAuthenticationResponse has the following fields:

Field Type Description

client_token_guid bytes The token bytes to be included in subsequent

HTTPS postings. This token should be saved for

future use.

code Code The result of the authentication request

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

The Code enumeration is:

Name Value Description

UNAUTHORIZED 0

AUTHORIZED 1

Table 180:

UserAuthenticationRequ

est JSON structure

Table 181:

UserAuthenticationResp

onse JSON structure

Table 182: Code

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 181

52.6. VERSION STATE

Retrieves Vector’s version information.

Post: “/v1/version_state”

52.6.1 Request

The VersionStateRequest has no fields.

52.6.2 Response

The VersionStateResponse type has the following fields:

Field Type Description

engine_build_id string The robot’s software build identifier.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

os_version string The identifier of the robot’s software version.

Table 183:

VersionStateResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 182

53. CUBE

This section describes the structures and commands to interact with the cube.

Comment: Many of the commands are specific to interacting with a cube, but appear to have been

intended to be generalized to work with a wider range of objects.

See also section 45.4 Define Custom Object for a description how to create custom box and cube

objects.

The cube’s unique identifier is called “factory_id” in these messages.

53.1. ENUMERATIONS

53.1.1 AlignmentType

The AlignmentType is used to indicate how Vector should align with the object. The enumeration

has the following named values:

Name Value Description

ALIGNMENT_TYPE_UNKNOWN 0

ALIGNMENT_TYPE_LIFT_FINGER 1 “Align the tips of the lift fingers with the target

object”

ALIGNMENT_TYPE_LIFT_PLATE 2 “Align the flat part of the lift with the object (useful

for getting the fingers in the cube's grooves)”

ALIGNMENT_TYPE_BODY 3 “Align the front of Vector's body (useful for when

the lift is up)”

ALIGNMENT_TYPE_CUSTOM 4 “For use with distanceFromMarker parameter”

53.1.2 CubeBatteryLevel

The CubeBatteryLevel enumeration is used to categorize the condition of the Cube battery:

Name Value Description

BATTERY_LEVEL_LOW 0 The Cube battery is 1.1V or less.

BATTERY_LEVEL_NORMAL 1 The Cube battery is at normal operating levels, i.e.

>1.1v

34 The levels are from robot.py

Table 184:

AlignmentType

Enumeration

Table 185:

CubeBatteryLevel

codes
34

 as they apply

to Vector

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 183

53.2. EVENTS

53.2.1 CubeBattery

The CubeBattery structure has the following fields:

Field Type Units Description

battery_volts float volts The battery voltage.

factory_id string The text string reported by the cube via Bluetooth

LE.

level CubeBatteryLevel The interpretation of the battery level.

time_since_last_reading_sec float seconds The number of seconds that have elapsed since the

last Bluetooth LE message from the cube with a

battery level measure.

53.2.2 CubeConnectionLost

“Indicates that the connection subscribed through ConnectCube has been lost.”

See also ObjectConnectionState

The ConnectCubeRequest has no fields.

53.2.3 ObjectTapped

The ObjectTapped event is sent (see ObjectEvent) when an object has received a finger-tap. This

event is only sent by the cube. Note: this event can have false triggers; it may sent when Vector is

picking up, carrying, or putting down the Cube.

The structure has the following fields:

Field Type Units Description

object_id uint32 The identifier of the object tapped.

timestamp uint32 The time that the event occurred on. The format

is milliseconds since Vector’s epoch.

Table 186: CubeBattery

JSON structure

Table 187:

ObjectTapped JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 184

53.3. CONNECT CUBE

“Attempt to connect to a cube. If a cube is currently connected, this will do nothing.”

Post: “/v1/connect_cube”

53.3.1 Request

The ConnectCubeRequest has no fields.

53.3.2 Response

The ConnectCubeResponse type has the following fields:

Field Type Description

factory_id string The identifier for the cube. This is built into the

cube.

object_id uint32 The identifier of the cube that we connected with.

This is Vector’s internal identifier, and only the

preferred cube is assigned one.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

success bool True if Vector was able to successfully connect, via

Bluetooth LE, with the cube.

53.4. CUBES AVAILABLE

Have Vector scan for cubes via Bluetooth LE and report the ones heard.

Post: “/v1/cubes_available”

53.4.1 Request

The CubesAvailableRequest has no fields.

53.4.2 Response

The CubesAvailableResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

factory_ids string[] A list of the cubes that were seen via Bluetooth LE.

The cubes internal identifier (it’s factor id) is sent.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 188:

ConnectCubeResponse

JSON structure

Table 189:

CubesAvailableRespons

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 185

53.5. DISCONNECT CUBE

“Requests a disconnection from the currently connected cube.”

Post: “/v1/disconnect_cube”

53.5.1 Request

The DisconnectCubeRequest has no fields.

53.5.2 Response

The DisconnectCubeResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 190:

DisconnectCubeRespon

se JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 186

53.6. DOCK WITH CUBE

“Tells Vector to dock with a light cube with [an optional] given approach angle and distance.”

“While docking with the cube, Vector will use path planning.”

This action requires the use of the wheels (tracks). “Actions that use the wheels cannot be

performed at the same time; otherwise you may see a TRACKS_LOCKED error.”

Post: “/v1/dock_with_cube”

53.6.1 Request

The DockWithCubeRequest structure has the following fields:

Field Type Units Description

alignment_type AlignmentType “Which part of the robot to align with the object.”

approach_angle_rad float radians “The angle to approach the cube from. For

example, 180 degrees will cause Vector to drive

past the cube and approach it from behind.”

distance_from_marker_mm float mm “The distance from the object to stop. This is the

distance between the origins.” 0mm to dock.

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

motion_prof PathMotionProfile Modifies how Vector should approach the cube.

Optional.

num_retries int32 Maximum of times to attempt to reach the object.

A retry is attempted if Vector is unable to reach the

target object.

object_id int32 The identifier of the object to dock with.

use_approach_angle bool If true, Vector will approach the cube from the

given approach angle; otherwise Vector will

approach from the most convenient angle.

use_pre_dock_pose bool If true, “try to immediately [dock with the] object

or first position the robot next to the object.”

Recommended to set this to the same as

use_approach_angle.

53.6.2 Response

The DockWithCubeResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 191:

DockWithCubeRequest

JSON structure

Table 192:

DockWithCubeResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 187

53.7. FLASH CUBE LIGHTS

“Plays the default cube connection animation on the currently connected cube's lights.”

Note: “This [command] is intended for app level user surfacing of cube connectivity, not for SDK

cube light control.”

Post: “/v1/flash_cube_lights”

53.7.1 Request

The FlashCubeLightsRequest has no fields.

53.7.2 Response

The FlashCubeLightsResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

53.8. FORGET PREFERRED CUBE

“Forget the robot's preferred cube. This will cause the robot to connect to the cube with the highest

RSSI (signal strength) next time a connection is requested. Saves this preference to disk. The next

cube that the robot connects to will become its preferred cube.”

See also section 53.15 Set Preferred Cube

Post: “/v1/forget_preferred_cube”

53.8.1 Request

The ForgetPreferredCubeRequest has no fields.

53.8.2 Response

The ForgetPreferredCubeResponse is sent to indicate whether the action successfully completed or

not. This structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 193:

FlashCubeLightsRespon

se JSON structure

Table 194:

ForgetPreferredCubeRe

sponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 188

53.9. PICKUP OBJECT

“Instruct the robot to pick up the supplied object.” “While picking up the cube, Vector will use

path planning.”

“Note that actions that use the wheels cannot be performed at the same time, otherwise you may

see a TRACKS_LOCKED error.”

53.9.1 Request

The PickupObjectRequest structure has the following fields:

Field Type Units Description

approach_angle_rad float radians “The angle to approach the cube from. For

example, 180 degrees will cause Vector to drive

past the cube and approach it from behind.”

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

motion_prof PathMotionProfile Optional.

num_retries int32 Maximum of times to attempt to reach the object.

A retry is attempted if Vector is unable to reach the

target object.

object_id int32 The identifier of the object to pick up. `Negative

value means currently selected object’

use_approach_angle bool If true, Vector will approach the cube from the

given approach angle; otherwise Vector will

approach from the most convenient angle.

use_pre_dock_pose bool “Whether or not to try to immediately pick up an

object or first position the robot next to the object.”

53.9.2 Response

The PickupObjectResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 195:

PickupObjectRequest

JSON structure

Table 196:

PickupObjectResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 189

53.10. PLACE OBJECT ON GROUND HERE

“Ask Vector to place the object he is carrying on the ground at the current location.”

53.10.1 Request

The PlaceObjectOnGroundRequest structure has the following fields:

Field Type Units Description

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

num_retries int32 Maximum of times to attempt to reach the object.

A retry is attempted if Vector is unable to reach the

target object.

53.10.2 Response

The PlaceObjectOnGroundResponse is sent to indicate whether the action successfully completed or

not. This structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 197:

PlaceObjectOnGroundR

equest JSON structure

Table 198:

PlaceObjectOnGroundR

esponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 190

53.11. POP A WHEELIE

“Tell Vector to `pop a wheelie’ using his cube.” Vector will approach the cube, then “push down

on [it] with [his] lift, to start the wheelie.”

53.11.1 Request

The PopAWheelieRequest structure has the following fields:

Field Type Units Description

approach_angle_rad float radians “The angle to approach the cube from. For

example, 180 degrees will cause Vector to drive

past the cube and approach it from behind.”

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

motion_prof PathMotionProfile zOptional.

num_retries int32 Maximum of times to attempt to reach the object.

A retry is attempted if Vector is unable to reach the

target object.

object_id int32 The identifier of the object to used to pop a

wheelie. Negative value means currently selected

object’

use_approach_angle bool If true, Vector will approach the cube from the

given approach angle; otherwise Vector will

approach from the most convenient angle.

use_pre_dock_pose bool “Whether or not to try to immediately [use the]

object or first position the robot next to the object.”

Recommended to set this to the same as

use_approach_angle.

53.11.2 Response

The PopAWheelieResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 199:

PopAWheelieRequest

JSON structure

Table 200:

PopAWheelieResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 191

53.12. ROLL BLOCK

“Make Vector roll his block, regardless of relative position and orientation.” This triggers a

behaviour, where Vector will look for his block, then “move into position as necessary based on

relative distance and orientation.”

See also section 53.13 Roll Object

Post: “/v1/roll_block”

53.12.1 Request

The RollBlockRequest has no fields.

53.12.2 Response

The RollBlockResponse structure has the following fields:

Field Type Description

result BehaviorResults

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 201:

RollBlockResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 192

53.13. ROLL OBJECT

“Tell Vector to roll his cube.” This triggers an action.

53.13.1 Request

The RollObjectRequest structure has the following fields:

Field Type Units Description

approach_angle_rad float radians “The angle to approach the cube from. For

example, 180 degrees will cause Vector to drive

past the cube and approach it from behind.”

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

motion_prof PathMotionProfile Optional.

num_retries int32 Maximum of times to attempt to reach the object.

A retry is attempted if Vector is unable to reach the

target object.

object_id int32 The identifier of the object to roll. `Negative value

means currently selected object’

use_approach_angle bool If true, Vector will approach the cube from the

given approach angle; otherwise Vector will

approach from the most convenient angle.

use_pre_dock_pose bool “Whether or not to try to immediately [roll the]

object or first position the robot next to the object.”

Recommended to set this to the same as

use_approach_angle.

53.13.2 Response

The RollObjectResponse is sent to indicate whether the action successfully completed or not. This

structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 202:

RollObjectRequest

JSON structure

Table 203:

RollObjectResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 193

53.14. SET CUBE LIGHTS

“Set each of the lights on the currently connected cube based on two RGB values each and timing

data for how to transition between them.”

“Sets each LED on [Vector]'s cube. Two states are specified designated ‘on’ and ‘off’, each with a

color, duration, and state transition time.”

See also the Chapter 23 section 103 Cube lights Animation

53.14.1 Request

The SetCubeLightsRequest event is used to specify the light pattern on the cube. The structure has

the following fields:

Field Type Units Description

object_id uint32 The internal id for the cube.

make_relative MakeRelativeMode Should be off (1)

off_color array of
uint32[]

 Each color corresponds to each of the 4 cube

lights. Each color is represented as four values

(red, green, blue, and alpha), in the range of

0..255.

off_period_ms uint32[] ms The “off” duration for each of the 4 cube lights.

This is the duration to show each cube light in its

corresponding “off” color (in off_color).

offset int32[4] recommended: set four 0’s.

on_color array of
uint32[]

 Each color corresponds to each of the 4 cube

lights. Each color is represented as four values

(red, green, blue, and alpha), in the range of

0..255.

on_period_ms uint32[] ms The “on” duration for each of the 4 cube lights.

This is the duration to show each cube light in its

corresponding “on” color (in onColors).

relative_to_x float Should be 0.0

relative_to_y float Should be 0.0

rotate boolean ? Possibly to have the colors be assigned to the

next clockwise (or counterclockwise) light

periodically? Should be false

transition_off_period_ms uint32[] ms The time (in ms) to transition from the on color to

the off color.

transition_on_period_ms uint32[] ms The time (in ms) to transition from the off color to

the on color

Table 204:

SetCubeLightsRequest

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 194

The MakeRelativeMode is used to indicate how Vector should align with the object. The

enumeration has the following named values:

Name Value Description

UNKNOWN 0

OFF 1

BY_CORNER 2

BY_SIDE 3

53.14.2 Response

The SetCubeLightsResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

53.15. SET PREFERRED CUBE

“Set the robot's preferred cube and save it to disk. The robot will always attempt to connect to this

cube if it is available. This is only used in simulation for now.”

Post: “/v1/set_preferred_cube”

53.15.1 Request

The SetPreferredCubeRequest structure has the following fields:

Field Type Units Description

factory_id string The identifier of the cube to use. This is built into

the cube.

53.15.2 Response

The SetPreferredCubeResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 205:

MakeRelativeMode

Enumeration

Table 206:

SetCubeLightsResponse

JSON structure

Table 207:

SetPreferredCubeReque

st JSON structure

Table 208:

SetPreferredCubeRespo

nse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 195

54. DIAGNOSTICS

This section include commands intended to help diagnose trouble: checking the connection with

the cloud servers; and uploading logs from Vector to help diagnose his problems.

54.1. CHECK CLOUD CONNECTION

This command is used to check the connection with the remote servers.

Post: “/v1/check_cloud_connection”

54.1.1 Request

The CheckCloudRequest has no fields.

54.1.2 Response

The CheckCloudResponse has the following fields:

Field Type Description

code ConnectionCode Whether the cloud is available, or the relevant

connection error.

expected_packets int32 The number of packets expected to have been

exchanged with the cloud server.

num_packets int32 The number of packets actually exchanged with the

cloud server.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

status_message string

The ConnectionCode is used to indicate whether the cloud is available. It is used in the response to

the CheckCloudConnectionRequest command. The ConnectionCode enumeration has the following

named values:

Name Value Description

AVAILABLE 1 The cloud is connected, and has authenticated

successfully.

BAD_CONNECTIVITY 2 The internet or servers are down.

FAILED_AUTH 4 The cloud connection has failed due to an

authentication issue.

FAILED_TLS 3 The cloud connection has failed due to [TLS

certificate?] issue.

UNKNOWN 0 There is an error connecting to the cloud, but the

reason is unknown.

Table 209:

CheckCloudResponse

JSON structure

Table 210:

ConnectionCode

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 196

54.2. UPLOAD DEBUG LOGS

TBD: Request that the logs be uploaded to the server for analysis.

Post: “/v1/upload_debug_logs”

54.2.1 Request

The UploadDebugLogsRequest structure has no fields.

54.2.2 Response

The UploadDebugLogsResponse structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

url string

Table 211:

UploadDebugLogsRespo

nse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 197

55. DISPLAY

This section describes commands that are used to display imagery on Vector’s LCD.

55.1. EVENTS

55.1.1 MirrorModeDisabled

The MirrorModeDisabled event is sent (see Event) “if MirrorMode (camera feed displayed on face) is

currently enabled but is automatically being disabled.”

The MirrorModeDisabled structure has no fields.

55.2. DISPLAY IMAGE RGB

“Sets screen (Vector's face) to” display the passed image.

Post: “/v1/display_face_image_rgb”

55.2.1 Request

The DisplayFaceImageRGBRequest structure has the following fields:

Field Type Units Description

duration_ms uint32 ms “How long to display the image on the face.”

face_data bytes The raw data for the image to display. The LCD is

184x96, with RGB565 pixels (16 bits/pixel).

interrupt_running bool “If this image should overwrite any current images

on the face.”

55.2.2 Response

The DisplayFaceImageRGBResponse structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 212:

DisplayFaceImageRGBRe

quest JSON structure

Table 213:

DisplayFaceImageRGBRe

sponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 198

55.3. ENABLE MIRROR MODE

“When enabled, camera feed will appear on the robot's face, along with any detections” (if

enabled).

Post: “/v1/enable_mirror_mode”

55.3.1 Request

The EnableMirrorModeRequest message has the following fields:

Field Type Description

enable bool If true, enables displaying the camera feed (and

detections) on the LCD.

55.3.2 Response

The EnableMirrorModeResponse structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

55.4. SET EYE COLOR

This is used to set Vector’s current eye color. See also section 66 Settings and Preferences

Post: “/v1/set_eye_color”

55.4.1 Request

The SetEyeColorRequest has the following fields:

Field Type Description

hue float The hue to set Vector’s eyes to.

saturation float The saturation of the color to set Vector’s eyes to.

55.4.2 Response

The SetEyeColorResponse structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 214:

EnableMirrorModeRequ

est JSON structure

Table 215:

EnableMirrorModeRespo

nse JSON structure

Table 216:

SetEyeColorRequest

JSON structure

Table 217:

SetEyeColorResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 199

56. FACES

This section describes the commands and queries related to Vector’s detection of faces, and

managing what he knows about them. For a description of the facial detection and recognition

process, see Chapter 19 section 82 Face and Facial features recognition.

Note: an int32 identifier is used to distinguish between faces that are seen. Each face will have a

separate identifier. A positive identifier is used for a face that is known (recognized). This value

will be the same when the face disappears and reappears later; the value likely persists across

reboots. A negative identifier is used for face that is not recognized; as unknown faces appear and

disappear they may be assigned different subsequent negative numbers. If a face becomes

recognized, a RobotChangedObservedFaceID event will be sent, along with a change in identifier

used.

see also section 64 On boarding

56.1. ENUMERATIONS

56.1.1 FaceEnrollmentResult

The FaceEnrollmentResult is used to represent the success of associating a face with a name, or an

reason code if there was an error. The enumeration has the following named values:

Name Value Description

SUCCESS 0 A face was seen, its facial signature and associated

name were successfully saved.

SAW_WRONG_FACE 1

SAW_MULTIPLE_FACES 2 Too many faces were seen, and Vector did not

know which one to associate with the name.

TIMED_OUT 3

SAVED_FAILED 4 There was an error saving the facial signature and

associated name to non-volatile storage.

INCOMPLETE 5

CANCELLED 6 See Cancel Face Enrollment.

NAME_IN_USE 7

NAMED_STORAGE_FULL 8 There was no more room in the non-volatile storage

to hold another facial signature and associated

name.

UNKOWN_FAILURE 9

56.1.2 FacialExpression

The FacialExpression is used to estimate the emotion expressed by each face that vector sees. The

enumeration has the following named values:

Name Value Description

EXPRESSION_UNKNOWN 0 The facial expression could not be estimated. Note:

this could be because the facial expression

Table 218:

FacialExpression

Enumeration

Table 219:

FacialExpression

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 200

estimation is disabled.

EXPRESSION_NEUTRAL 1 The face does not appear to have any particular

expression.

EXPRESSION_HAPPINESS 2 The face appears to be happy

EXPRESSION_SURPRISE 3 The face appears to be surprised.

EXPRESSION_ANGER 4 The face appears

EXPRESSION_SADNESS 5 The face appears to be sad.

56.2. EVENTS

56.2.1 FaceEnrollmentComplete

The FaceEnrollmentComplete structure has the following fields:

Field Type Description

face_id int32 The identifier code for the face.

name string The name associated with the face.

result FaceEnrollmentResult Whether or not the face enrollment was successful;

an error code if not.

56.2.2 Meet Victor Face Scan Complete

The MeetVictorFaceScanComplete structure has no fields.

56.2.3 Meet Victor Face Scan Started

The MeetVictorFaceScanStarted structure has no fields.

56.2.4 RobotChangedObservedFaceID

This event occurs when a tracked (but not yet recognized) face is recognized and receives a

positive ID. This happens when Vector’s view of the face improves. This event can also occur

“when face records get merged” “(on realization that 2 faces are actually the same).”

Table 220:

FaceEnrollmentComplet

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 201

The RobotChangeObservedFaceID structure has the following fields:

Field Type Description

new_id int32 The new identifier code for the face that has been

recognized.

old_id int32 The identifier code that was used for the face until

now. Probably negative

56.2.5 RobotErasedEnrolledFace

The RobotErasedEnrolledFace event is sent to confirm that an enrolled face has been removed from

the robot. This structure has the following fields:

Field Type Description

face_id int32 The identifier code for the face; negative if the face

is not recognized, positive if it has been recognized.

name string The name associated with the face. Empty if a

name is not known.

56.2.6 RobotObservedFace

The RobotObservedFace event is sent when faces are observed within the field of view. This event

is only sent if face detection is enabled. This structure has the following fields:

Field Type Description

face_id int32 The identifier code for the face; negative if the face

is not recognized, positive if it has been recognized.

expression FacialExpression The estimated facial expression seen on the face.

expression_values uint32[] An array that represents the histogram of

confidence scores in each individual expression. If

the expression is not known (e.g. expression

estimation is disabled), the array will be all zeros.

Otherwise, will sum to 100.

img_rect CladRect The area within the camera view holding the face.

name string The name associated with the face (if recognized).

Empty if a name is not known.

pose PoseStruct The position and orientation of the face.

left_eye CladPoint[] A polygon outlining the left eye, with respect to the

image rectangle.

mouth CladPoint[] A polygon outlining the mouth; the coordinates are

in the camera image.

nose CladPoint[] A polygon outlining the nose; the coordinates are in

the camera image.

right_eye CladPoint[] A polygon outlining the right eye; the coordinates

are in the camera image.

timestamp uint32 The time that the most recent facial information

was obtained. The format is milliseconds since

Vector’s epoch.

Table 221:

RobotChangedObserve

dFaceID JSON structure

Table 222:

RobotErasedEnrolledFa

ce JSON structure

Table 223:

RobotObservedFace

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 202

56.2.7 RobotRenamedEnrolledFace

The RobotRenamedEnrolledFace event is sent to confirm that an enrolled face has been given a new

name. This structure has the following fields:

Field Type Description

face_id int32 The identifier code for the face; negative if the face

is not recognized, positive if it has been recognized

name string The name now associated with the face. Empty if a

name is not known.

56.3. CANCEL FACE ENROLLMENT

Cancels the request to look for a face and associate the face with a name.

post: “/v1/cancel_face_enrollment”

56.3.1 Request

The CancelFaceEnrollmentRequest structure has no fields.

56.3.2 Response

The CancelFaceEnrollmentResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 224:

RobotRenamedEnrolled

Face JSON structure

Table 225:

CancelFaceEnrollmentR

esponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 203

56.4. ENABLE FACE DETECTION

This command enables (or disables) face detection, facial expression detection, blink and gaze

detection. Disabling one or more of these features reduces the number of events sent by Vector,

and reduces his processing overhead.

post: “/v1/enable_face_detection”

56.4.1 Request

The EnableFaceDetectionRequest structure has the following fields:

Field Type Description

enable bool If true, face detection (and recognition) is enabled;

otherwise face detection processes are disabled.

enable_blink_detection bool If true, Vector will attempt “to detect how much

detected faces are blinking.” Note: the blink

amount is not reported.

enable_expression_estimation bool If true, Vector will attempt to estimate facial

expressions.

enable_gaze_detection bool If true, Vector will attempt “to detect where

detected faces are looking.” Note: the gaze

direction is not reported.

enable_smile_detection bool If true, Vector will attempt “to detect smiles in

detected faces.” Note: the smile is not reported.

56.4.2 Response

The EnableFaceDetectionResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 226:

EnableFaceDetectionRe

quest JSON structure

Table 227:

EnableFaceDetectionRes

ponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 204

56.5. ENROLL FACE

This command is used to add a face to the database.

post: “/v1/enroll_face”

56.5.1 Request

The EnrollFaceRequest structure has no fields.

56.5.2 Response

The EnrollFacesResponse structure has the following fields:

Field Type Description

result BehaviorResults

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

56.6. ERASE ALL ENROLLED FACES

This command is used to erase all of the known faces (and their identity).

post: “/v1/erase_all_enrolled_faces”

56.6.1 Request

The EraseAllEnrolledFacesRequest structure has no fields.

56.6.2 Response

The EraseAllEnrolledFacesResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 228:

EnrollFacesResponse

JSON structure

Table 229:

EraseAllEnrolledFacesRe

sponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 205

56.7. ERASE ENROLLED FACE BY ID

This command is used to erase the indentify feature (and identity) of a known face.

post: “/v1/erase_enrolled_face_by_id”

56.7.1 Request

The EraseEnrolledFaceByIDRequest structure has the following fields:

Field Type Description

face_id int32 The identifier code for the face to erase.

56.7.2 Response

The EraseEnrolledFaceByIDResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

56.8. FIND FACES

This causes Vector to look around for faces. He does this by turning in place and moving his head

up and down. This is carried out by the TBD behaviour.

post: “/v1/find_faces”

56.8.1 Request

The FindFacesRequest structure has no fields.

56.8.2 Response

The FindFacesResponse structure has the following fields:

Field Type Description

result BehaviorResults

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 230:

EraseEnrolledFaceByIDR

equest JSON structure

Table 231:

EraseEnrolledFaceByIDR

esponse JSON structure

Table 232:

FindFacesResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 206

56.9. REQUEST ENROLLED NAMES

This command is used to list the faces known to Vector, their names, and some other useful

information.

post: “/v1/request_enrolled_names”

56.9.1 Request

The RequestEnrolledNamesRequest structure has no fields.

56.9.2 Response

The RequestEnrolledNamesRequest structure has the following fields:

Field Type Description

faces LoadedKnownFace[] An array of the faces that are associated with

names.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

The LoadedKnownFace structure has the following fields:

Field Type Units Description

face_id int32 The identifier code for the face.

last_seen_seconds_since_epoch int64 seconds The timestamp of the time the face was last seen.

The format is unix time: seconds since 1970, in

UTC?

name name The name associated with the face.

seconds_since_first_enrolled int64 seconds The number of seconds since the face was first

associated with a name and entered into the known

faces database.

seconds_since_last_seen int64 seconds The number of seconds since the face was last seen

seconds_since_last_updated int64 seconds The number of seconds since (?) the name

associated with the face was last changed.(?)

Table 233:

RequestEnrolledNames

Response JSON

structure

Table 234:

LoadedKnownFace

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 207

56.10. SET FACE TO ENROLL

This command is can used to assign a name to unrecognized face, or to update the recognition

pattern (and name) for an already known face. This command initiates a behaviour that can be

configured.

post: “/v1/set_face_to_enroll”

56.10.1 Request

The SetFaceToEnrollRequest structure has the following fields:

Field Type Description

name string The name to associate with the face.

observed_id int32 If non-zero, the identifier code for a specific

observed face to enroll. Note the identifier is

negative if the face is not already recognized,

positive if it has been recognized. If zero, Vector

will use the next face he sees.

save_id int32 If non-zero, Vector will use this ID as the ID for

the face. (Note: this must be “the ID of an existing

face”). If zero, Vector will use the observedID for

the ID.

save_to_robot bool If true, “save to robot's NVStorage when done

(NOTE: will (re)save everyone enrolled!)”

say_name bool If true, “play say-name/celebration animations on

success before completing.”

use_music bool If true, “starts special music during say-name

animations (will leave music playing!)”

56.10.2 Response

The SetFaceToEnrollResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 235:

SetFaceToEnrollRequest

JSON structure

Table 236:

SetFaceToEnrollRespons

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 208

56.11. UPDATE ENROLLED FACE BY ID

This command is used to change the name associated with a face.

post: “/v1/update_enrolled_face_by_id”

56.11.1 Request

The UpdateEnrolledFaceByIDRequest structure has the following fields:

Field Type Description

face_id int32 The identifier code for the face.

new_name string The new name to associate with the face.

old_name string The name associated (until now) with the face.

This name must match the one Vector has for the

face_id. If not the command will not be honored.

56.11.2 Response

The UpdateEnrolledFaceByIDResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 237:

UpdateEnrolledFaceByI

DRequest JSON

structure

Table 238:

UpdateEnrolledFaceByI

DResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 209

57. FEATURES & ENTITLEMENTS

Vector has granular features that can be enabled and disabled thru the use of feature flags. This

section describes the queries related to list Vector’s features flags, and their state. For a description

of feature flags, see Chapter 31 Settings, Preferences, Features, and Statistics. For a list of the

features, and a description of each, see Appendix I, Table 636: The features.

Note: the API does not include the ability to enable a feature.

Note: For AI behaviour “features” see section 46.2.1 FeatureStatus.

57.1. ENUMERATIONS

57.1.1 UserEntitlement

The UserEntitlement enumeration has the following named values:

Name Value Description

KICKSTARTER_EYES 0 Note: This was an entitlement that was explored,

but not used.

Table 239:

UserEntitlement

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 210

57.2. GET FEATURE FLAG

Request the current setting of a feature flag.

post: “/v1/feature_flag”

57.2.1 Request

The FeatureFlagRequest message has the following fields:

Field Type Description

feature_name string The name of the feature; this feature name should

be one of those listed in response to Get Feature

Flag List (section 57.3). See Appendix I, Table

636: The features

57.2.2 Response

The FeatureFlagResponse type has the following fields:

Field Type Description

feature_enabled bool True if the feature is enabled, false if not

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

valid_feature bool True if the given feature name is a valid name of a

feature; false if not.

Table 240:

FeatureFlagRequest

JSON structure

Table 241:

FeatureFlagResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 211

57.3. GET FEATURE FLAG LIST

Request the list of the current feature flags. Note: to see which flags are enabled, use the Get

Feature Flag command (section 57.2).

post: “/v1/feature_flag_list”

57.3.1 Request

The following is streamed… to the robot?

Field Type Description

request_list string

57.3.2 Response

The FeatureFlagListResponse type has the following fields:

Field Type Description

list string[] An array of the feature flags; see Appendix I, Table

636: The features for a description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 242:

FeatureFlagListRequest

JSON structure

Table 243:

FeatureFlagListRespons

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 212

57.4. UPDATE USER ENTITLEMENTS

UpdateUserEntitlements

Post: “/v1/update_user_entitlements”

57.4.1 Request

The UpdateUserEntitlementsRequest has the following fields:

Field Type Description

user_entitlements UserEntitlementsConfig

The UserEntitlementsConfig has the following fields:

Field Type Description

kickstarter_eyes bool

57.4.2 Response

The UpdateUserEntitlementsResponse type has the following fields:

Field Type Description

code ResultCode

doc Jdoc

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 244: JSON

Parameters for

UpdateUserEntitlement

sRequest

Table 245: JSON

Parameters for

UserEntitlementsConfig

Table 246:

UpdateUserEntitlements

Response JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 213

58. IMAGE PROCESSING

This section describes camera setting, and properties, and retrieve pictures/video stream. See also

section 56 Faces, for detecting and recognizing faces, and enabling the features

58.1. ENUMERATIONS

58.1.1 ImageEncoding

The ImageEncoding is used to describe the format of the image data contained in the chunk. The

enumeration has the following named values:

Name Value Description

NONE_IMAGE_ENCODING 0 Image is not encoded. TBD: does this mean no

image?

RAW_GRAY 1 “No compression”

RAW_RGB 2 “no compression, just [RGBRGBRG...]”

YUYV 3

YUV420SP 4

BAYER 5

JPEG_GRAY 6

JPEG_COLOR 7

JPEG_COLOR_HALF_WIDTH 8

JPEG_MINIMIZED_GRAY 9 “Minimized grayscale JPEG - no header, no footer,

no byte stuffing”

JPEG_MINIMIZED_COLOR 10 “Minimized grayscale JPEG – no header, no footer,

no byte stuffing, with added color data.”

58.2. EVENTS

58.2.1 CameraSettingsUpdate

This CameraSettingsUpdate event is sent when the camera exposure settings change. This structure

has the following fields:

Field Type Units Description

auto_exposure_enabled bool

exposure_ms uint32 ms

gain float

Table 247:

ImageEncoding

Enumeration

Table 248:

CameraSettingsUpdate

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 214

58.2.2 RobotObservedMotion

This RobotObservedMotion event structure has the following fields:

Field Type Units Description

bottom_img_area float area
fraction

“Area of the supporting region for the point, as a

fraction of the bottom region”

bottom_img_x int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

bottom_img_y int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

ground_area float area

fraction
“Area of the supporting region for the point, as a

fraction of the ground ROI. If unable to map to the

ground, area=0.”

ground_x int32 mm “Coordinates of the point on the ground, relative to

robot, in mm.”

ground_y int32 mm “Coordinates of the point on the ground, relative to

robot, in mm.”

img_area float area
fraction

“Area of the supporting region for the point, as a

fraction of the image”

img_x int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

img_y int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

left_img_area float area

fraction
“Area of the supporting region for the point, as a

fraction of the left region.”

left_img_x int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

left_img_y int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

right_img_area float area

fraction
“Area of the supporting region for the point, as a

fraction of the right region.”

right_img_x int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

right_img_y int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

timestamp uint ms “Timestamp of the corresponding image”

top_img_area float area

fraction
“Area of the supporting region for the point, as a

fraction of the top region”

top_img_x int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

top_img_y int32 pixel “Pixel coordinate of the point in the image, relative

to top-left corner.”

Table 249:

RobotObservedMotion

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 215

58.2.3 VisionModesAutoDisabled

The VisionModesAutoDisabled event is “sent when vision modes [have been] automatically disabled

due to the SDK no longer having control of the robot.”

The VisionModesAutoDisabled structure has no fields.

58.3. CAMERA FEED

This command is used to “request a camera feed from the robot.”

Post: “/v1/camera_feed”

58.3.1 Request

The CameraFeedRequest has no fields.

58.3.2 Response

The response is a stream of the following CameraFeedResponse structure. This structure has the

following fields:

Field Type Description

data bytes The bytes of the image

frame_time_stamp uint32 The time that the image frame was captured.

image_encoding ImageEncoding The data format used for the image.

image_id uint32

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 250:

CameraFeedResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 216

58.4. CAPTURE SINGLE IMAGE

“Request a single image to be captured and sent from the robot” to the application

Post: “/v1/capture_single_image”

58.4.1 Request

The CaptureSingleImageRequest has the following fields:

Field Type Description

enable_high_resolution bool True if the image should be capture in high

resolution; false to capture in 640x360 resolution.

Default: false. Optional.

Note: this field is only honoured in version 1.7 and

later of the software.

58.4.2 Response

The CaptureSingleImageResponse structure has the following fields:

Field Type Description

data bytes The bytes of the image

frame_time_stamp uint32 The time that the image frame was captured.

image_encoding ImageEncoding The data format used for the image.

image_id uint32

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 251:

CaptureSingleImageReq

uest JSON structure

Table 252:

CaptureSingleImageRes

ponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 217

58.5. ENABLE IMAGE STREAMING

“Toggle image streaming at the given resolution”

Post: “/v1/enable_image_streaming”

58.5.1 Request

The EnableImageStreamingRequest type has the following fields:

Field Type Description

enable bool True if Vector should send a stream of images from

the camera.

enable_high_resolution bool True if the image should be captured in high

resolution; false to capture in 640x360 resolution.

Default: false. Optional.

Note: this field is only honoured in version 1.7 and

later of the software.

58.5.2 Response

The EnableImageStreamingResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 253:

EnableImageStreamingR

equest JSON structure

Table 254:

EnableImageStreamingR

esponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 218

58.6. ENABLE MARKER DETECTION

This enables and disables the processing of custom marker symbols and generating events when a

marker symbol is seen. If enabled, when an marker symbol is see, the RobotObservedObject event

will be sent.

Note: The custom marker detection may remain internally enabled, even if disabled by the SDK,

“if another subscriber (including one internal to the robot) requests this vision mode be active.”

Post: “/v1/enable_marker_detection”

58.6.1 Request

The EnableMarkerDetectionRequest has the following fields:

Field Type Description

enable bool If true, enable search for maker symbols, and

generating events when they are detected,

58.6.2 Response

The EnableMarkerDetectionResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 255: JSON

Parameters for

EnableMarkerDetection

Request

Table 256:

EnableMarkerDetection

Response JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 219

58.7. ENABLE MOTION DETECTION

Enables detecting visual motion, and sending RobotObservedMotion events in response.

Post: “/v1/enable_motion_detection”

58.7.1 Request

The EnableMotionDetectionRequest structure has the following fields:

Field Type Description

enable bool True if RobotObservedMotion events should be sent.

58.7.2 Response

The EnableMotionDetectiontResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 257:

EnableMotionDetection

Request JSON structure

Table 258:

EnableMotionDetection

Response JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 220

58.8. GET CAMERA CONFIG

Requests the camera calibration and exposure settings. See Chapter 19 for more information on

these.

Post: “/v1/get_camera_config”

58.8.1 Request

The CameraConfigRequest has no fields.

58.8.2 Response

The CameraConfigResponse structure has the following fields:

Field Type Units Description

center_x float “The position of the optical center of projection

within the image. It will be close to the center of

the image, but adjusted based on the calibration of

the lens at the factory.”

center_y float

focal_length_x float The “focal length combined with pixel skew (as the

pixels aren't perfectly square), so there are subtly

different values for x and y.”
focal_length_y float

fov_x float degree The full field of view along the x-axis.

fov_y float degree The full field of view along the y-axis.

max_camera_exposure_time_ms uint32 ms The maximum duration allowed for a frame

exposure.

min_camera_exposure_time_ms uint32 ms The minimum allowed duration for a frame

exposure.

max_camera_gain float The maximum allowed camera gain setting.

min_camera_gain float The minimum allowed camera gain setting.

58.9. IS IMAGE STREAMING ENABLED

This command is used to inquire “whether or not image streaming is enabled on the robot”

Post: “/v1/is_image_streaming_enabled”

58.9.1 Request

The IsImageStreamingRequest has no fields.

58.9.2 Response

The IsImageStreamingResponse “indicates whether or not image streaming is enabled on the robot.”

The structure has the following fields:

Field Type Description

enable bool True if image streaming is enabled, false otherwise

Table 259:

CameraConfigResponse

JSON structure

Table 260:

IsImageStreamingRespo

nse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 221

58.10. SET CAMERA SETTINGS

This command is used to change the camera exposure settings.

Post: “/v1/set_camera_config”

58.10.1 Request

The SetCameraSettingsRequest has the following fields:

Field Type Units Description

auto_exposure_enabled bool True if the camera suhould use auto-exposure

mode.

exposure_ms uint32 ms The requested duration of exposure, when in

manual settings.

gain float

58.10.2 Response

The SetCameraSettingsResponse structure has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

status_string string

Table 261:

SetCameraSettings

parameters

Table 262:

SetCameraSettingsResp

onse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 222

59. INTERACTIONS WITH OBJECTS

These commands are used to interact with faces and objects. These initiate behaviours.

 Some behaviours can be assigned a tag that can be used to cancel it later.

 Some behaviours accept a parameter to modify their motion profile.

 Behaviour results value

Actions

 Actions can be assigned a tag that can be used to cancel it later.

 Action results value

See also section 46 Actions and Behaviour, and section 53 Cube

59.1. STRUCTURES

59.1.1 PathMotionProfile

This structure contains “all the information relevant to how a path should be modified or

traversed.”

Field Type Units Description

accel_mmps2 float mm/sec2 How fast Vector should accelerate to achieve the

target speed.

decel_mmps2 float mm/sec2 How fast Vector should decelerate to the target

speed.

is_custom bool

dock_accel_mmps2 float mm/sec2 How fast Vector should accelerate when

performing the docking procedure.

dock_decel_mmps2 float mm/sec2 How fast Vector should decelerate when

performing the docking procedure.

dock_speed_mmps float mm/sec The speed that Vector should perform the docking

procedure at.

point_turn_accel_mmps2 float mm/sec2 How fast Vector should accelerate when turning (in

place).

point_turn_decel_mmps2 float mm/sec2 How fast Vector should decelerate when turning (in

place).

point_turn_speed_mmps float mm/sec The speed that Vector should perform a turn (in

place).

reverse_speed_mmps float mm/sec How fast Vector should moved when backing up

speed_mmps float mm/sec The speed that Vector should move along the path

Table 263:

PathMotionProfile

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 223

59.2. DRIVE OFF CHARGER

This command directs Vector to drive off his charger – if he is on the charger. This will initiate a

behavior.

Post: “/v1/drive_off_charger”

59.2.1 Request

The DriveOffChargerRequest structure has no fields.

59.2.2 Response

The DriveOffChargerResponse type has the following fields:

Field Type Description

result BehaviorResults

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

59.3. DRIVE ON CHARGER

This command directs Vector to drive onto his charger – if he is not already on the charger.

“Vector will attempt to find the charger and, if successful, he will back onto it and start charging.

Vector's charger has a visual marker so that the robot can locate it for self-docking.” This will

initiate a behavior.

Post: “/v1/drive_on_charger”

59.3.1 Request

The DriveOnChargerRequest structure has no fields.

59.3.2 Response

The DriveOnChargerResponse type has the following fields:

Field Type Description

result BehaviorResults

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 264:

DriveOffChargerRespon

se JSON structure

Table 265:

DriveOnChargerRespon

se JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 224

59.4. GO TO OBJECT

“Tell Vector to drive to the specified object” (i.e. his cube). Note: custom objects “are not

supported.” This initiates an action.

59.4.1 Request

The GoToObjectRequest structure has the following fields:

Field Type Units Description

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

motion_prof PathMotionProfile Optional.

num_retries int32 The maximum number of times to attempt to reach

the object. A retry is attempted if Vector is unable

to reach the target object.

object_id int32 The identifier of the object to drive to. Note:

custom objects “are not supported”

distance_from_object_origin_mm float mm “The distance from the object to stop. This is the

distance between the origins. For instance, the

distance from the robot's origin (between Vector's

two front wheels) to the cube's origin (at the center

of the cube) is ~40mm.”

use_pre_dock_pose bool Set this to false

59.4.2 Response

The GoToObjectResponse is sent to indicate whether the action successfully completed or not. This

structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 266:

GoToObjectRequest

JSON structure

Table 267:

GoToObjectResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 225

59.5. TURN TOWARDS FACE

 “Tell Vector to turn towards” the specified face. This initiates an action.

59.5.1 Request

The TurnTowardsFaceRequest structure has the following fields:

Field Type Description

face_id int32 The identifier of the face to look for

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

max_turn_angle_rad float Recommend value of 180°

num_retries int32 Maximum of times to attempt to reach the object.

A retry is attempted if Vector is unable to reach the

target object.

59.5.2 Response

The TurnTowardsFaceResponse is sent to indicate whether the action successfully completed or not.

This structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 268:

TurnTowardsFaceReque

st JSON structure

Table 269:

TurnTowardsFaceRespo

nse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 226

60. JDOCS

This section discusses the commands for “Jdocs” (short for “JSON Documents”), which are JSON

objects that are passed to Vic-Engine and then onto Vic-Cloud. See the next chapter for interactions

with a remote Jdocs server, using a sibling protocol.

60.1. ENUMERATIONS

60.1.1 JdocType

The JdocType enumeration has the following named values:

Name Value Description

ACCOUNT_SETTINGS 2 Refers to the owner’s account settings

ROBOT_LIFETIME_STATS 1 Refers to the robot’s settings (owner preferences)

ROBOT_SETTINGS 0 Refers to the robot’s lifetime stats.

USER_ENTITLEMENTS 3 Refers to the owner’s entitlements.

Items of these types are described in more detail in Chapter 31.

60.2. STRUCTURES

60.2.1 Jdoc

The Jdoc type has the following fields:

Field Type Description

client_meta string Probably an empty string.

doc_version uint64 A number used to uniquely identify changes to the

setting structure, and be able to tell which ones is

the more recent settings. Most often this is the

number of times that the settings have been

changed.

fmt_version uint64 The version number of the jdoc structure schema;

this is always 1.

json_doc string The jdoc structure serialized as a string.

60.2.2 NamedJdoc

The NamedJdoc type has the following fields:

Field Type Description

doc Jdoc The JSON structure and meta-data about the

document

jdoc_type JdocType The type of document provided in “doc”

Table 270: JdocType

Enumeration

Table 271: Jdoc JSON

structure

Table 272: JSON

NamedJdoc structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 227

60.3. EVENTS

60.3.1 JdocsChanged

The JdocsChanged message is sent when a Jdoc objct has been changed. This message has the

following fields:

Field Type Description

jdoc_types JdocType[] The list of Jdoc’s to retrieve.

60.4. PULL JDOCS

This command is used to retrieve a Jdocs object.

Post: “/v1/pull_jdocs”

60.4.1 Request

The PullJdocsRequest has the following fields:

Field Type Description

jdoc_types JdocType[] Each of the retrieved Jdoc objects.

60.4.2 Response

The PullJdocResponse has the following fields:

Field Type Description

named_jdocs NamedJdoc[]

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 273: JSON

JdocsChanged request

structure

Table 274: JSON

PullJdocsRequest

structure

Table 275: JSON

PullJdocsResponse

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 228

61. MAPPING

61.1. THE NAVIGATION MAP FEED

This is used to request a stream of navigation map data.

Post: “/v1/nav_map_feed”

61.1.1 Request

“Requests [navigation] map data from the robot at a specified maximum update frequency.

Responses in the [navigation] map stream may be sent less frequently if the robot does not consider

there to be relevant new information.”

The NavMapFeedRequest has the following fields:

Field Type Description

frequency float The frequency that updates to the map should be

sent

61.1.2 Response

“A full [navigation] map sent from the robot. It contains an origin_id that which can be compared

against the robot's current origin_id, general info about the map, and a collection of quads

representing the map's content.”

The NavMapFeedResponse has the following fields:

Field Type Description

map_info NavMapInfo A description of the map as a whole.

origin_id uint32 Which version of the map this pose is in (0 for

none or unknown). See Chapter 20 for a

description of the mapping origin id.

quad_infos NavMapQuadInfo[] The individual elements of the map.

The NavMapInfo is used to describe the map as a whole. It has the following fields:

Field Type Units Description

root_center_x float mm The x coordinate of the maps center

root_center_y float mm The y coordinate of the maps center

root_center_z float mm The z coordinate of the maps center

root_depth int The depth of the quad tree: the number levels to the

leaf nodes.

root_size_mm float mm The length and width of the whole map. (The map

is square).

Table 276: JSON

NavMapFeedRequest

structure

Table 277: JSON

NavMapFeedResponse

structure

Table 278: NavMapInfo

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 229

The NavMapQuadInfo is “an individual sample of Vector's [navigation] map. This quad's size will

vary and depends on the resolution the map requires to effectively identify boundaries in the

environment.” It has the following fields:

Field Type Description

color_rgba uint32 Suggested color for the area of the map, used when

visualizing the map.

content NavNodeContentType A tag of what Vector has identified as located in

this area.

depth uint32 The depth within the tree.

“Every tile in the [navigation] map will be tagged with a content key referring to the different

environmental elements that Vector can identify.” The NavNodeContentType is used to represent

the kind of environmental element.

Name Value Description

NAV_NODE_UNKNOWN 0 It is not known what is in the area

NAV_NODE_CLEAR_OF_OBSTACLE 1 Vector has confirmed that an obstacle is not present

in this area.

NAV_NODE_CLEAR_OF_CLIFF 2 Vector has confirmed that an obstacle is not present

in this area.

NAV_NODE_OBSTACLE_CUBE 3 The cube is in this area

NAV_NODE_OBSTACLE_PROXIMITY 4 The time of flight sensor (the proximity sensor)

indicates that there is an obstacle in this area.

NAV_NODE_OBSTACLE_PROXIMITY_EXPLORED 5

NAV_NODE_OBSTACLE_UNRECOGNIZED 6

NAV_NODE_CLIFF 7 There is a cliff here

NAV_NODE_INTERESTING_EDGE 8

NAV_NODE_NON_INTERESTING_EDGE 9

Table 279:

NavMapQuadInfo

structure

Table 280:

NavNodeContentType

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 230

62. MOTION CONTROL

This section describes commands to drive Vector, and to control his lift & head position. See also

section 59 Interactions with Objects.

62.1. DRIVE STRAIGHT

This will initiate an action of Vector driving in a straight line.

Note: “Vector will drive for the specified distance (forwards or backwards) Vector must be off of

the charger for this movement action. [A] that use the wheels cannot be performed at the same

time; otherwise you may see a TRACKS_LOCKED error.”

62.1.1 Request

The DriveStraightRequest has the following fields:

Field Type Units Description

dist_mm float mm The distance to drive. (Negative is backwards)

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

is_absolute uint32 If 0, turn by angle_rad relative to the current

orientation. If 1, turn to the absolute angle given

by angle_rad.

num_retries int32 Maximum of times to attempt to move the head to

the height. A retry is attempted if Vector is unable

to reach the target angle

should_play_animation bool If true, “play idle animations whilst driving (tilt

head, hum, animated eyes, etc.)”

speed_mmps float mm/sec The speed to drive at. This should be positive.

62.1.2 Response

The DriveStraightResponse has the following fields:

Field Type Description

response ActionResult Whether the action is able to be run. If not, an

error code indicating why not.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 281:

DriveStraightRequest

JSON structure

Table 282:

DriveStraightResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 231

62.2. DRIVE WHEELS

Sets the speed and acceleration for Vector's wheel motors.

62.2.1 Request

The DriveWheelsRequest has the following fields:

Field Type Units Description

left_wheel_mmps float mm/sec The initial speed to set the left wheel to.

left_wheel_mmps2 float mm/sec2 How fast to increase the speed of the left wheel.

right_wheel_mmps float mm/sec The initial speed to set the right wheel to.

right_wheel_mmps2 float mm/sec2 How fast to increase the speed of the right wheel.

To unlock the wheels, set all values to 0.

62.2.2 Response

The DriveWheelsResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 283:

DriveWheelsRequest

JSON structure

Table 284:

DriveWheelsResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 232

62.3. GO TO POSE

“Tells Vector to drive to the specified pose and orientation.” This will initiate an action. “In

navigating to the requested pose, Vector will use path planning. “Since the robot understands

position by monitoring its tread movement, it does not understand movement in the z axis. This

means that the only applicable elements of pose in this situation are position.x position.y and

rotation.angle_z.

“Note that actions that use the wheels cannot be performed at the same time, otherwise you may

see a TRACKS_LOCKED error.”

Post: “/v1/go_to_pose”

62.3.1 Request

The GoToPoseRequest structure has the following fields:

Field Type Units Description

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

motion_prof PathMotionProfile

num_retries int32 Maximum of times to attempt to reach the pose. A

retry is attempted if Vector is unable to reach the

target pose.

rad float radians The angle to change orientation to.

x_mm float mm The x-coordinate of the position to move to.

y_mm float mm The y-coordinate of the position to move to.

62.3.2 Response

The GoToPoseResponse is sent to indicate whether the action successfully completed or not. This

structure has the following fields:

Field Type Description

result ActionResult An error code indicating the success of the action,

the detailed reason why it failed, or that the action

is still being carried out.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 285:

GoToPoseRequest JSON

structure

Table 286:

GoToPoseResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 233

62.4. MOVE HEAD

Move Vector's head

62.4.1 Request

The MoveHeadRequest has the following fields:

Field Type Units Description

speed_rad_per_sec float radian/sec The speed to drive the head motor at. Positive

values tilt the head up, negative tilt the head down.

A value of 0 will unlock the head track.

62.4.2 Response

The MoveHeadResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

62.5. MOVE LIFT

Move Vector's lift

62.5.1 Request

The MoveLiftRequest has the following fields:

Field Type Units Description

speed_rad_per_sec float radian/sec The speed to drive the lift at. Positive values move

the lift up, negative move the lift down. A value of

0 will unlock the lift track.

62.5.2 Response

The MoveLiftResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 287:

MoveHeadRequest

JSON structure

Table 288:

MoveHeadResponse

JSON structure

Table 289:

MoveLiftRequest JSON

structure

Table 290:

MoveLiftResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 234

62.6. SET HEAD ANGLE

This will initiate an action to move Vector’s head to a given angle.

62.6.1 Request

The SetHeadAngleRequest has the following fields:

Field Type Units Description

accel_rad_per_sec2 float radian/sec2 How fast to increase the speed the head is moving

at. Recommended value: 10 radians/sec2

angle_rad float radians The target angle to move Vector’s head to. This

should be in the range -22.0° to 45.0°.

duration_sec float sec “Time for Vector's head to move in seconds. A

value of zero will make Vector try to do it as

quickly as possible.”

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

max_speed_rad_per_sec float radian/sec The maximum speed to move the head. (This

clamps the speed from further acceleration.)

Recommended value: 10 radians/sec

num_retries int32 count Maximum of times to attempt to move the head to

the height. A retry is attempted if Vector is unable

to reach the target angle

62.6.2 Response

The SetHeadAngleResponse has the following fields:

Field Type Description

response ActionResult Whether the action is able to be run. If not, an

error code indicating why not.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 291:

SetHeadAngleRequest

JSON structure

Table 292:

SetHeadAngleResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 235

62.7. SET LIFT HEIGHT

This will initiate an action to move Vector's lift to a given height.

62.7.1 Request

The SetLiftRequest has the following fields:

Field Type Units Description

accel_rad_per_sec2 float radian/sec2 How fast to increase the speed the lift is moving at/

Recommended value: 10 radians/sec2

duration_sec float sec “Time for Vector's lift to move in seconds. A value

of zero will make Vector try to do it as quickly as

possible.”

height_mm float mm The target height to raise the lift to.

Note: the python API employs a different range for

this parameter

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

max_speed_rad_per_sec float radian/sec The maximum speed to move the lift at. (This

clamps the speed from further acceleration.)

Recommended value: 10 radians/sec

num_retries int32 count Maximum of times to attempt to move the lift to

the height. A retry is attempted if Vector is unable

to reach the target height.

62.7.2 Response

The SetLiftResponse has the following fields:

Field Type Description

response ActionResult Whether the action is able to be run. If not, an

error code indicating why not.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 293:

SetLiftRequest JSON

structure

Table 294:

SetLiftResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 236

62.8. STOP ALL MOTORS

Stop all motor commands for the head, lift and wheels

62.8.1 Request

The StopAllMotorsRequest structure has no fields.

62.8.2 Response

The StopAllMotorsResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 295:

StopAllMotorsResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 237

62.9. TURN IN PLACE

This command initiates an action to turn Vector around its current position.

Note: “Vector must be off of the charger for this movement action. Note that actions that use the

wheels cannot be performed at the same time, otherwise you may see a TRACKS_LOCKED

error.”

62.9.1 Request

The TurnInPlaceRequest has the following fields:

Field Type Units Description

accel_rad_per_sec2 float radian/sec2 How fast to increase the speed the body is moving

at

angle_rad float radians If is_absolute is 0, turn relative to the current

heading by this number of radians; positive means

turn left, negative is turn right. Otherwise, turn to

the absolute orientation given by this angle.

id_tag int32 This is an action tag that can be assigned to this

request and used later to cancel the action.

Optional.

is_absolute uint32 If 0, turn by angle_rad relative to the current

orientation. If 1, turn to the absolute angle given

by angle_rad.

num_retries int32 count Maximum of times to attempt to turn to the target

angle. A retry is attempted if Vector is unable to

reach the target angle.

speed_rad_per_sec float radian/sec The speed to move around the arc.

tol_rad float count “The angular tolerance to consider the action

complete (this is clamped to a minimum of 2

degrees internally).”

62.9.2 Response

The TurnInPlaceResponse has the following fields:

Field Type Description

response ActionResult Whether the action is able to be run. If not, an

error code indicating why not.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 296:

TurnInPlaceRequest

JSON structure

Table 297:

TurnInPlaceResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 238

63. MOTION SENSING AND ROBOT STATE

This section describes the structures and events that describe the sensed motions.

The values are given with respect to a “coordinate space is relative to Vector, where Vector's origin

is the point on the ground between Vector's two front wheels. The X axis is Vector's forward

direction, the Y axis is to Vector's left, and the Z axis is up.”

63.1. ENUMERATIONS

63.1.1 UnexpectedMovementSide

The UnexpectedMovementSide enumeration has the following named values:

Name Value Description

UNKOWN 0

FRONT 1

BACK 2

LEFT 3

RIGHT 4

63.1.2 UnexpectedMovementType

The UnexpectedMovementType enumeration has the following named values:

Name Value Description

TURNED_BUT_STOPPED 0

TURNED_IN_SAME_DIRECTION 1

TURNED_IN_OPPOSITE_DIRECTI
ON

2

ROTATING_WITHOUT_MOTORS 3

63.2. STRUCTURES

63.2.1 AccelData

This structure is used to report the accelerometer readings, as part of the RobotState structure. The

accelerometer is located in Vector’s head, so its XYZ axes are not the same as Vector’s body axes.

When motionless, the accelerometer can be used to calculate the angle of Vectors head. The

AccelData has the following fields:

Field Type Units Description

x float mm/s2 The acceleration along the accelerometers X axis.

y float mm/s2 The acceleration along the accelerometers Y axis.

z float mm/s2 The acceleration along the accelerometers Z axis.

Table 298:

UnexpectedMovementSi

de Enumeration

Table 299:

UnexpectedMovementT

ype Enumeration

Table 300: AccelData

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 239

When at rest, there will be a constant 9810 mm/s2 downward acceleration from gravity. This most

likely will be distributed over multiple axes.

63.2.2 GyroData

This structure is used to report the gyroscope readings, as part of the RobotState structure. The

gryoscope is located in Vector’s head, so its XYZ axes are not the same as Vector’s body axes.

The GryroData has the following fields:

Field Type Units Description

x float radian/s The angular velocity around the X axis.

y float radian/s The angular velocity around the Y axis.

z float radian/s The angular velocity around the Z axis.

63.2.3 ProxData

This structure is used to report the “time of flight” proximity sensor readings, as part of the

RobotState structure.

“The proximity sensor is located near the bottom of Vector between the two front wheels, facing

forward. The reported distance describes how far in front of this sensor the robot feels an

obstacle is. The sensor estimates based on time-of-flight information within a field of view which

the engine resolves to a certain quality value.”

The distance measurement may not be valid. The sensor may be blocked Vector’s lift or the item

he is carying. Or the sensor may not have picked up anything significant. These are indicated by

“four additional flags are supplied by the engine to indicate whether this proximity data is

considered valid for the robot's internal pathfinding.” It is recommended that an application track

the most recent proximity data from the robot, and the most recent proximity data which did not

have the lift blocking.

The ProxData has the following fields:

Field Type Units Description

distance_mm uint32 mm The distance to the object (if any)

found_object bool True if “the sensor detected an object in the valid

operating range.”

is_lift_in_fov bool True if “Vector's lift (or an object in the lift) is

blocking the time-of-flight sensor. While the lift

will send clear proximity signals, it's not useful for

object detection.”

signal_quality float An estimate of the “reliability of the measurement.”

“The proximity sensor detects obstacles within a

given field of view; this value represents the

likelihood of the reported distance being a solid

surface.”

unobstructed bool True if “the sensor has confirmed it has not

detected anything up to its max range.” (The

opposite of found_object)

Table 301: GyroData

JSON structure

proximity sensor

Table 302: ProxData

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 240

63.2.4 TouchData

This structure is used to report the touch sensor readings, as part of the RobotState structure. The

TouchData has the following fields:

Field Type Units Description

is_being_touched bool True if Vector is currently being touched.

raw_touch_value uint32 “Raw input from the touch sensor.”

63.3. EVENTS

63.3.1 RobotState

The RobotState structure is periodically posted in an Event message. The structure has the

following fields:

Field Type Units Description

accel AccelData The accelerometer readings

carrying_object_id int32 -1 if no object is being carried. Otherwise the

identifier of the cube (or other object) being

carried.

carrying_object_on_top_id int32 Not supported

gyro GyroData The gyroscope readings

head_angle_rad float radian The angle of Vector’s head (how much it is tilted

up or down).

head_tracking_object_id int32 The identifier “of the object the head is tracking

to.” If no object is being tracked, this will be -1.

last_image_time_stamp uint32 “The robot's timestamp for the last image seen.”

The format is milliseconds since Vector’s epoch.

left_wheel_speed_mmps float mm/s The speed of Vector’s left wheel.

lift_height_mm float mm “Height of Vector's lift from the ground.”

localized_to_object_id int32 The identifier “of the object that the robot is

localized to.” If no object, this will be -1.

pose PoseStruct “The current pose (position and orientation) of

Vector.”

pose_angle_rad float radian “Vector's pose angle (heading in X-Y plane).”

pose_pitch_rad float radian “Vector's pose pitch (angle up/down).”

right_wheel_speed_mmps float mm/s The speed of Vector’s right wheel.

prox_data ProxData The time-of-flight proximity sensor readings.

status uint32 A bit map of active states of Vector; the bits are

described in the RobotStatus enumeration.

“This status provides a simple mechanism to, for

example, detect if any of Vector's motors are

moving, determine if Vector is being held, or if he

is on the charger.”

touch_data TouchData The touch sensor readings.

Table 303: TouchData

JSON structure

Table 304: RobotState

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 241

63.3.2 Unexpected Movement

The UnexpectedMovement structure is posted in an Event message when a movement is sensed, but

the robot had not intended it. The structure has the following fields:

Field Type Description

movement_side UnexpectedMovementSi
de

movement_type UnexpectedMovementTy
pe

timestamp uint32 The time that the movement was sensed. The

format is unix time: seconds since 1970, in UTC.

Table 305:

UnexpectedMovement

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 242

64. ON BOARDING

The section describes the command and events used to introduce Vector to his new human, and his

human to Vector’s features.

64.1. ENUMERATIONS

64.1.1 OnboardingPhase

The OnboardingPhase enumeration has the following named values:

Name Value Description

InvalidPhase 0

Default 1

LookAtPhone 2

WakeUp 3

LookAtUser 4

TeachWakeWord 5

TeachComeHere 6

TeachMeetVictor 7

64.1.2 OnboardingPhaseState

The OnboardingPhaseState enumeration has the following named values:

Name Value Description

PhaseInvalid 0

PhasePending 1

PhaseInProgress 2

PhaseComplete 3

Table 306:

OnboardingPhase

Enumeration

Table 307:

OnboardingPhaseState

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 243

64.2. EVENTS

The following are events related to onboarding.

64.2.1 Onboarding

The Onboarding event is sent as different stages of the onboarding process have been completed.

This structure has the following fields:

Field Type Description

onboarding_1p0_charging_info Onboarding1p0ChargingI
nfo

onbaording_state OnboardingState

onboarding_wakeup_finished {} This structure contains no fields.

64.2.2 Onboarding1p0ChargingInfo

This structure is used to report whether Vector needs to charge, and an estimated (or

recommended) duration. It is part of the Onboarding event structure. This structure has the

following fields:

Field Type Units Description

needs_to_charge bool If true, Vector needs to charge before onboarding

can continue.

on_charger bool If true, Vector is on his charger, and there is power

supplied to the charger.

suggested_charger_time float The estimated amount of time to charger Vector

before completing the onboarding process.

64.2.3 OnboardingState

The OnboardingState type has the following fields:

Field Type Description

stage OnboardingStages Where in the onboarding process we are

The OnboardingStages enumeration has the following named values:

Name Value Description

NotStarted 0 The onboarding process has not started yet.

TimedOut 1 The onboarding process has halted because an

operation timed out.

Complete 3 The onboarding has completed.

DevDoNothing 4

Table 308: Onboarding

JSON structure

Table 309:

Onboarding1p0ChargingI

nfoJSON structure

Table 310:

OnboardingState JSON

structure

Table 311:

OnboardingStages

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 244

64.3. ONBOARDING COMPLETE REQUEST

64.3.1 Request

The OnboardingCompleteRequest structure has no fields.

64.3.2 Response

The OnboardingCompleteResponse type has the following fields:

Field Type Description

completed bool True if the onboarding process has completed.

64.4. ONBOARDING INPUT

Post: “/v1/send_onboarding_input”

64.4.1 Request

The OnboardingInputRequest has one (and only one) of the following fields:

Field Type Description

onboarding_charge_info_request {} This is a request for charging information; it

contains no fields.

onboarding_complete_request {} This is a request to complete the onboarding; it

contains no fields.

onboarding_mark_complete_and_

exit

{} This contains no fields.

onboarding_restart {} This is a request to restart the onboarding process;

it contains no fields.

onboarding_skip_onboarding {} This is a request to skip the onboarding; it contains

no fields.

onboarding_phase_progress_requ

est

{} This contains no fields.

onboarding_set_phase_request OnboardingSetPhaseReq
uest

See below.

onboarding_wake_up_request {} This is a request to wake up Vector; it contains no

fields.

onboarding_wake_up_started_req
uest

{} This contains no fields.

The OnboardingSetPhaseRequest type has the following fields:

Field Type Description

phase OnboardingPhase The desired phase to be in

Table 312:

OnboardingCompleteRe

sponse JSON structure

Table 313:

OnboardingInputReques

t JSON structure

Table 314:

OnboardingSetPhaseReq

uest JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 245

64.4.2 Response

The OnboardingInputResponse has a status field one (and only one) of the remaining following

fields (which will correspond to the one sent in the request):

Field Type Description

onboarding_charge_info_respons
e

OnboardingChargingInfo
Response

See below

onboarding_complete_response OnboardingCompleteRes
ponse

See below

onboarding_phase_progress_resp

onse

{} See below

onboarding_set_phase_response OnboardingSetPhaseRes
ponse

See below.

onboarding_wake_up_response OnboardingWakeupResp
onse

See below

onboarding_wake_up_started_res

ponse

OnboardingWakeupStart
edResponse

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

ONBOARDINGCHARGINGINFORESPONSE

This structure is used to report whether Vector needs to charge, and an estimated (or suggested)

duration. It is part of the OnboardingInputResponse event structure. This structure has the

following fields:

Field Type Units Description

needs_to_charge bool If true, Vector needs to charge before onboarding

can continue.

on_charger bool If true, Vector is on his charger, and there is power

supplied to the charger.

required_charge_time float The estimated amount of time to charger Vector

before completing the onboarding process.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Note: this structure is similar to the Onboarding1p0ChargingInfo structure. That structures is older,

but retained as software had already been developed against it.

ONBOARDINGCOMPLETERESPONSE

The OnboardingCompleteResponse type has the following fields:

Field Type Description

completed bool True if the onboarding has completed

Table 315:

OnboardingInputRespon

se JSON structure

Table 316:

OnboardingInputRespon

se structure

Table 317:

OnboardingCompleteRe

sponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 246

ONBOARDINGPHASEPROGRESSRESPONSE

This structure is used to report how far we are in a particular phase of onboarding. It is part of the

OnboardingInputResponse event structure. This structure has the following fields:

Field Type Units Description

last_set_phase OnboardingPhase

last_set_phase_state OnboardingPhaseState

percent_completed int32 % How far we are in the phase.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

ONBOARDINGSETPHASERESPONSE

The OnboardingSetPhaseResponse type has the following fields:

Field Type Units Description

last_set_phase OnboardingPhase

last_set_phase_state OnboardingPhaseState

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

ONBOARDINGWAKEUPRESPONSE

The OnboardingWakeupResponse type has the following fields:

Field Type Description

charging_info Onboarding1p0ChargingI
nfo

Whether or not Vector needs to charge after waking

up.

waking_up bool True if Vector is waking up.

ONBOARDINGWAKEUPSTARTEDRESPONSE

The OnboardingWakeupStartedResponse type has the following fields:

Field Type Description

already_started bool True if the onboarding has completed

Table 318:

OnboardingPhaseProgre

ssResponse structure

Table 319:

OnboardingSetPhaseRes

ponse JSON structure

Table 320:

OnboardingWakeupResp

onse JSON structure

Table 321:

OnboardingWakeupStart

edResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 247

64.5. ONBOARDING STATE

This command is used to request the state of the onboarding process.

Post: “/v1/get_onboarding_state”

64.5.1 Request

The OnboardingStateRequest structure has no fields.

64.5.2 Response

The OnboardingStateResponse type has the following fields:

Field Type Description

onboarding_state OnboardingState Where in the onboarding process we are.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

64.6. ONBOARDING WAKE UP REQUEST

64.6.1 Request

The OnboardingWakeUpRequest structure has no fields.

64.6.2 Response

The OnboardingWakeUpResponse type has the following fields:

Field Type Description

already_started bool True if the process of waking Vector up for

onboarding has already been started.

64.7. ONBOARDING WAKE UP STARTED REQUEST

64.7.1 Request

The OnboardingWakeUpStartedRequest structure has no fields.

64.7.2 Response

The OnboardingWakeUpStartedResponse type has the following fields:

Field Type Description

charging_info Onboarding1p0ChargingI
nfo

The state of Vectors initial charging

waking_up bool True if TBD

Table 322:

OnboardingStateRespon

se JSON structure

Table 323:

OnboardingWakeUpResp

onse JSON structure

Table 324:

OnboardingWakeUpStar

tedResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 248

65. PHOTOS

This section describes the commands and queries related to accessing and managing photographs

(and their thumbnail images) on Vector. For a description of the photos, see Chapter 18 Image

Processing.

65.1. STRUCTURES

65.1.1 Photo Path

The PhotoPathMessage type has the following fields:

Field Type Description

full_path string

success bool True if the photograph exists; otherwise, the

photograph does not exist.

65.1.2 Thumbnail Path

The ThumbnailPathMessage type has the following fields:

Field Type Description

full_path string

success bool True if the thumbnail image exists; otherwise, the

thumbnail does not exist.

65.2. EVENTS

65.2.1 PhotoTaken

The PhotoTaken event is sent after Vector has taken a photograph and stored it. This structure has

the following fields:

Field Type Description

photo_id uint32 The identifier of the photograph taken.

Table 325:

PhotoPathMessage

JSON structure

Table 326:

ThumbnailPathMessage

JSON structure

Table 327: PhotoTaken

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 249

65.3. DELETE PHOTO

This command is used to delete a photograph and its thumbnail

Post: “/v1/delete_photo”

65.3.1 Request

The DeletePhotoRequest has the following fields:

Field Type Description

photo_id uint32 The identifier of the photograph to delete.

65.3.2 Response

The DeletePhotoResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

success bool True if the photograph was successfully removed;

otherwise there was an error.

65.4. PHOTO

This command is used to retrieve the photograph’s image.

Post: “/v1/photo”

65.4.1 Request

The PhotoRequest structure has the following fields:

Field Type Description

photo_id uint32 The identifier of the photograph to request.

65.4.2 Response

The PhotoResponse type has the following fields:

Field Type Description

image bytes The data that make up the photograph’s image

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

success bool True if the photograph was successfully retrieved;

otherwise there was an error.

Table 328:

DeletePhotoRequest

JSON structure

Table 329:

DeletePhotoResponse

JSON structure

Table 330:

PhotoRequest JSON

structure

Table 331:

PhotoResponse JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 250

65.5. PHOTOS INFO

This command is used to get the list of photographs available on Vector.

Post: “/v1/photos_info”

65.5.1 Request

The PhotosInfoRequest structure has no fields.

65.5.2 Response

The PhotosInfoResponse type has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

photo_infos PhotoInfo[] An array of information about the photographs

available on Vector.

The PhotoInfo type has the following fields:

Field Type Description

photo_copied_to_app bool True if the photograph has been downloaded to the

application.

photo_id uint32 The identifier of this photograph. This can be used

to retrieve the thumbnail, photograph or to delete it.

thumb_copied_to_app bool True if the thumbnail image has been downloaded

to the application.

timestamp_utc uint32 The time that the photograph was taken. The

format is unix time: seconds since 1970, in UTC.

Table 332:

PhotosInfoResponse

JSON structure

Table 333: PhotoInfo

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 251

65.6. THUMBNAIL

This command is used to retrieve the thumbnail image of a photograph.

Post: “/v1/thumbnail”

65.6.1 Request

The ThumbnailRequest structure has the following fields:

Field Type Description

photo_id uint32 The identifier of the photograph to request a

thumbnail for.

65.6.2 Response

The ThumbnailResponse type has the following fields:

Field Type Description

image bytes The data that make up the thumbnail’s image

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

success bool True if the thumbnail was successfully retrieved;

otherwise there was an error.

Table 334:

ThumbnailRequest

JSON structure

Table 335:

ThumbnailResponse

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 252

66. SETTINGS AND PREFERENCES

This section describes the commands and queries related to settings and preferences on Vector.

For a description of the settings and what they mean, see Chapter 30 Settings, Preferences,

Features, and Statistics. That chapter includes definitions for the following types:

 RobotSettingsConfig

66.1. STRUCTURES

66.1.1 AccountSettingsConfig

The AccountSettingsConfig type has the following fields:

Field Type Description

app_locale string The IETF language tag of the human companion’s

language preference – American English, UK

English, Australian English, German, French,

Japanese, etc.

default: “en-US”

data_collection boolean True if data collection – crash logs and DAS events

– are allowed to be uploaded ot the server.

66.2. UPDATE SETTINGS

This command is used to update the settings on the robot.

Post: “/v1/update_settings”

66.2.1 Request

The UpdateSettingsRequest has the following fields:

Field Type Description

settings RobotSettingsConfig The settings to apply to the robot.

66.2.2 Response

The UpdateSettingsResponse type has the following fields:

Field Type Description

code ResultCode Whether or not the update was accepted and

completed.

doc Jdoc The Jdoc with the updated settings.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 336:

AccountSetting JSON

structure

Table 337:

UpdateSettingsRequest

JSON structure

Table 338:

UpdateSettingsRespons

e JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 253

66.3. UPDATE ACCOUNT SETTINGS

This command is used to update the account wide settings, such as opning into or out of data

collection.

Post: “/v1/update_account_settings”

66.3.1 Request

The UpdateAccountsSettingsRequest has the following fields:

Field Type Description

account_settings AccountSettingsConfig The new account settings.

66.3.2 Response

The UpdateAccountsSettingsResponse type has the following fields:

Field Type Description

code ResultCode Whether or not the update was accepted and

completed.

doc Jdoc The Jdoc with the updated settings.

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

Table 339: JSON

Parameters for

UpdateAccountSettings

Request

Table 340:

UpdateAccountSettings

Response JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 254

67. SOFTWARE UPDATES

These commands are siblings to the OTA Update and related commands in Chapter 13 Bluetooth

LE protocol. However, they differ: in some cases, less information, in others they present the same

information in different ways.

67.1. ENUMERATIONS

67.1.1 UpdateStatus

The UpdateStatus enumeration has the following named values:

Name Value Description

IN_PROGRESS_DOWNLOAD 2 The software update is currently being downloaded.

NO_UPDATE 0 There are no software updates available.

READY_TO_INSTALL 1 The software update has been downloaded and is

ready to install.

67.2. START UPDATE ENGINE

“StartUpdateEngine cycles the update-engine service (to start a new check for an update) and sets

up a stream of UpdateStatusResponse events.”

Post: “/v1/start_update_engine”

This command uses the same request and response structures as CheckUpdateStatus

67.3. CHECK UPDATE STATUS

“CheckUpdateStatus tells if the robot is ready to reboot and update.”

Post: “/v1/check_update_status”

67.3.1 Request

The CheckUpdateStatusRequest structure has no fields.

67.3.2 Response

This is streamed set of update status. The CheckUpdateStatusResponse type has the following

fields:

Field Type Description

expected int64 The number of bytes expected to be downloaded

progress int64 The number of bytes downloaded

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

update_status UpdateStatus Whether the update engine is active, and where in

the update process it is.

update_version string The version of software being updated to.

Table 341:

UpdateStatus

Enumeration

Table 342:

CheckUpdateStatusRes

ponse JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 255

67.4. UPDATE AND RESTART

Post: “/v1/update_and_restart”

67.4.1 Request

The UpdateAndRestartRequest structure has no fields.

67.4.2 Response

The UpdateAndRestartResponse has the following fields:

Field Type Description

status ResponseStatus A generic status of whether the request was able to

be carried out, or an error code indicating why it

was unable to be carried out.

68. HISTORICAL ODDITIES

The Github repository is interesting for the SDK commands that were removed. The last version

of the repository for many of these commands is:

https://github.com/anki/vector-python-sdk/tree/c14082af5a947c23016111c1f73a445d8356dbf8

Some commands removed from this repository (possibly later) because they were not implemented

on Vector include:

 Network statistics

 Ability to set and fetch the camera settings

 Motion observed events

 An audio stream from Vector’s microphone to the SDK application

Table 343:

UpdateAndRestartResp

onse JSON structure

https://github.com/anki/vector-python-sdk/tree/c14082af5a947c23016111c1f73a445d8356dbf8

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 256

CHAPTER 16

The Web Visualization

Protocol

This chapter describes the internal web visualization (“web-viz”) and web-sockets interface.

69. COMMUNICATION OVERVIEW

Development builds of Vectors software include an optional web-visualization (webviz) tool, built

on a web-socket interface. This protocol predates the HTTPS based protocol, which has since

superseded, at least in some areas. Studying the protocol does provide some insight into the

internal structures of Vectors modules.

Cavaet: This feature is not present in the production releases, nor many of the development

releases. As this is a debugging tool, the schema for the data provided over the web-socket was

subject to change with each software version.

The developer build includes some special URLs for listing a manifest of the control variables:

File Description

/consolevars A web-GUI with tabs and display features for variables broken output

module grouping.

/devData.json A table mapping the modules names to their current state; This is not

included in 1.7.

It also provides an HTTP GET interface to access the control variables, and initiate functions:

File Description

/consolefunclist The list of functions

/consolefunccall The consolefunccall?func=playanimation&args=

/consolevarget This is used to fetch the current value of a console variable

/consolevarlist Produces a list of variables; each variable terminated with a
, one

per line

/dasinfo

/daslog

/getAppMessages

/getinitialconfig The web server configuration variables

/getmainrobotinfo Serial number, linux version string, command line, robot ID, WiFi

access point name, etc.

/getperfstats

Table 344: WebViz

special URLs

Table 345: WebViz

GET URLS supported

by the internal web

server

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 257

/getprocessstatus

/processstatus

/sendAppMessage

/systemctl

69.1. CONSOLE VARIABLES

The control variables are the module settings, and internal measurements. All variable names are

lexical numbers, digits, and underscore – no spaces, no periods, etc. The list of console variables

can be found in a few different ways:

 /consolevars is not convenient, and would required a lot of scrapping

 /consolevarlist

 /consolefunccall?func=List_Variables will provide the list of variables, their associated

module, and their current value

note: the module name can have spaces; it can also be dotted, as in Major and Minor name.

69.1.1 Getting A Console Variable’s Current Value

The value associated with a console variable can be fetched with an HTTP GET:

/consolevarget?key=name_of_variable

69.1.2 Setting A Console Variable to a Value

A console variable can be set with an HTTP GET:

 /consolevarset?key=name_of_variable&value=new_value

70. WEBSOCKET OVERVIEW

From the application level the protocol is organized into as stream of module-specific JSON

messages that share a common web-socket, plus some management of that stream:

 Subscribe, and unsubscribe to module-specific events

 Receiving module-specific messages from the robot

 Sending module-specific message to the robot

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 258

WebSocket

F
ra

m
e · Type

· Module

· Data

Module specific

JSON

Module specific

JSON

Module specific

JSON

Before we go further we’ll need to know the module identifiers. The modules differ by ports that

vend their events:

Module Name Port(s) Description

Alexa 8889 Alexa related events

AnimationEngine 8888 Animation trigger events

Animations 8889 Events related to the start and completion of

animations.

AudioEvents 8889 The starting and stopping audio

BeatDetector 8888 Events related to listening for music and its beat

Behaviors 8888 Events related to the current behavior tree

BehaviorConds 8888 Events related to the current behavior tree, and

conditions

CloudIntents 8888 Events related to connecting to the cloud voice

server

Cpu 8888

CpuProfile 8888
8889

Cubes 8888 Provides events related to the cube communication

link and interaction.

Features 8888 Provides which feature toggles are enabled and

disabled.

Habitat 8888 Events related to detecting the habitat (sold as

“Vector Space”)

HeldInPalm 8888 Events related to being held in palm; appears to be

unimplemented.

IMU 8888

Intents 8888 Events related to processing intents

MicData 8889

Mood 8888 Events related to Vector’s current emotional state (or

mood).

NavMap 8888

ObservedObjects 8888 Event related to observed faces, cubes, and other

Figure 63: Overview of

the websocket wrapper

Table 346: Module

names and their ports

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 259

marked objects.

Power 8888 Changes in who is requesting Vector to enter a

power save state.

Sleeping 8888 Events related to Vector’s sleep behavior

SoundReactions 8888

SpeechRecognizerSys 8889

Touch 8888 Events related to the touch sensor

VisionScheduleMediator 8888 Events related to the management of the image

processing system.

70.1. SETTING UP THE COMMUNICATION CHANNEL

The URL to connect to is:

 ws://address:port/socket

Where the address is the address of the Vector of interest, and the port is the shared port for the

modules of interest, given in the earlier table.

To subscribe to events from a module post the following JSON structure to the web socket:

Field Type Description

module string The lower case name of the module to subscribe to events

from. See Table 346: Module names and their ports for the

module names

type string “subscribe”

To unsubscribe from events from a module post the following JSON structure to the web socket:

Field Type Description

module string The lower case name of the module to unsubscribe to events

from. See Table 346: Module names and their ports for the

module names

type string “unsubscribe”

Events related to the module will come with the following structure:

Field Type Description

data JSON The event structure for the given module.

module string The name of the module to unsubscribe to events from. See

Table 346: Module names and their ports for the module

names. The module name is not guaranteed to be in lower

case; any matching should be performed in a case-less

fashion.

Table 347: Subscribing

to a module’s events

Table 348:

Unsubscribing from a

module’s events

Table 349: Module

event parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 260

To send a request to the module, it is wrapped with:

Field Type Description

data JSON The event structure for the given module.

module string The lower case name of the module to send the data to. See

Table 346: Module names and their ports for the module

names

type string “data”

70.2. RECEIVED EVENTS

70.2.1 Alexa State

These Alex state events have the following fields:

Field Type Description

authState uint Whether or not Alexa is authenticated

uxState uint

These Alex state events have the following fields:

Field Type Description

data

type string “directive”

70.2.2 Animation Engine (AnimationEngine)

This may come before or after the animation start.

These animation engine events have the following fields:

Field Type Description

clip string The name of the specific animation selected

group string The animation group name

headAngle_deg float The angle of the head

mood string The simple mood name (e.g. “MedStim”)

trigger string The animation trigger name

Table 350: Posting an

setting parameters

Table 351: Alexa state

event parameters

Table 352: Alexa state

visualization parameters

Table 353: Animation

engine event

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 261

70.2.3 Animations

This animation state event includes a type field that describes how to interpret the rest of the

structure. The events have the following fields:

Field Type Description

animation string The name of the animation

type string “start” if the animation is starting.

“stop” if the animation has completed.

70.2.4 Audio events

See Chapter 25 for details of the audio events. The event includes a type field that describes how

to interpret the rest of the structure.

When an audio event is sent, the event structure has the following fields:

Field Type Description

eventName string The name of the event (or its identifier) that was sent to the

audio engine.

gameObjectId string The identifier that the audio engine will use for the object;

this identifier is expected to link to items within Vector’s

“game world” – his mental model.

hasCallback boolean

time float The time that this occurred at (seconds since power on)

type string “PostAudioEvent”

When all audio events are stopped, the event structure has the following fields:

Field Type Description

eventName string The name of the event (or its identifier) that was sent to the

audio engine.

gameObjectId string The identifier that the audio engine will use for the object;

this identifier is expected to link to items within Vector’s

“game world” – his mental model.

time uint The time that this occurred at (seconds since power on)

type string “StopAllAudioEvents”

When an audio group is set to a new state, an event structure with the following fields is sent:

Field Type Description

stateGroupId string The state group to modify

stateId The new state that the group is being put into

time uint The time that this occurred at (seconds since power on)

type string “SetState”

Table 354: Animation

state event parameters

Table 355: Audio post

event parameters

Table 356: Audio stop

all event parameters

Table 357: Audio state

group event parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 262

When an audio switch group is set to a new state, the event structure has the following fields:

Field Type Description

gameObjectId string The new state that the switch is being changed into.

switchGroupId string The switch being modified.

switchStateId The new state that the switch is being put into

time float The time that this occurred at (seconds since power on)

type string “SetSwitchState”

70.2.5 Beat Detector (BeatDetector)

See Chapter 18 section 76.5 Beat Detection for the event structures.

70.2.6 Behaviors

Todo There are two forms of events send by the behaviors module.

Can also be an array of strings. Which lists every behavior name.

When a behavior event is sent, the event structure has the following fields:

Field Type Description

activeFeature string The name of the active AI feature (given as associated

ActiveFeature in the behavior node, appendix I) followed by

space and “(AI)”. Optional

debugState string example: driving. Optional

stack string[] An array of behavior identifiers. The last item is the current

active behavior. Optional

time float The time that this occurred at (seconds since power on).

Optional

tree TreeNode[] The behavior’s and their parents. Optional

The behavior TreeNode structure has the following fields:

Field Type Description

behaviorID string The identifier for a given behavior node

parent string The identifier of the parent node for this behavior. Some are

prefixed by an @ symbol

70.2.7 Behavior Conditions (BehaviorConds)

Note: “when the stack changes, we'll receive new conditions before receiving the stack.”

When a behavior condition event is sent, the event structure has the following fields:

Field Type Description

factors Factor[] The current set of factors being examined. Optional

inactive string The name of condition that is now inactive. Optional

Table 358: Audio switch

group event parameters

Table 359: Behavior

event parameters

Table 360: TreeNode

parameters

Table 361: Behavior

condition events

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 263

owner string The name of the owning behavior. Optional. Note: if factors

is present, this is not.

stack string[] An array of behavior identifiers. The last item is the current

active behavior. Optional

time float The time that this occurred at (seconds since power on)

tree TreeNode[] The behaviors and their parents. Optional

The Factor structure has the following fields:

Field Type Description

areConditionsMet boolean True of the conditions for the behavior were met: they have

all been true

conditionLabel string The name of the condition

ownerDebugLabel string The name of the owning behavior.

70.2.8 Cloud Intent

The cloud intent event is a structure or an array of structures with the following fields:

Field Type Description

file string Path, internal to the system, to the capture

 debug file. Remove the leading

“/data/data/com.anki.victor” to get the URL resource path.

Only present if type is “debugFile”. Optional

time int The time in UTC seconds

type string “debugFile” or …

The cloud intent event is a structure or an array of structures with the following fields:

Field Type Description

error string “Token” if there hasn’t been a token passed to vector {Also

write up why this is important.}

time int The time in UTC seconds

type string “error”

70.2.9 CPU

When a CPU event is sent, the event structure has the following fields:

Field Type Description

deltaTime_ms int The time step in milliseconds

usage string[] An array of processor usage stats from procstat35, one for

each processor

35 http://www.linuxhowtos.org/System/procstat.htm

Table 362: Factor

parameters

Table 363: Cloud event

parameters

Table 364: Cloud event

parameters

Table 365: CPU

parameters

http://www.linuxhowtos.org/System/procstat.htm

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 264

70.2.10 CPU Profile

When a CPU profile event is sent, the event structure has the following fields:

Field Type Description

sample Sample[] An array of CPU usage samples for the thread

threadName string The name of the thread that was measured for this CPU

profile

time float Time stamp

The Sample structure has the following fields:

Field Type Description

max float The maximum CPU usage during the time interval

mean float The average CPU usage during the time interval

min float The minimum CPU usage during the time interval

name string The name of the thread that this belongs to

70.2.11 Cubes

Note: The Cube events are sent regardless of whether Vector is communication with his cube.

When a Cube event is sent, the event structure has the following fields:

Field Type Description

cccInfo CCCInfo Optional

citInfo CitInfo Optional

commInfo CommInfo Information about the connected cube, and the state of the

connection. Optional

Table 366: CPU profile

parameters

Table 367: Sample

parameters

Table 368: Cube event

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 265

The CCCInfo structure has the following fields:

Field Type Description

connectionState string The state of the connection. “Unconnected” or

“UnConnected”36, “Connecting”., “ConnectedBackground”,

or “Interactable” or.. “ConnectedInteractable”

“ConnectedSwitchingToBackground”

stateCountdown StateCountDown[] The time left before the temporary connection expires

subscriberData SubscriberData[] Information about which modules have requested which

level of connection with the cube.

The CitInfo structure has the following fields:

Field Type Description

heldProbability The probability that the cube is being held.

movedFarRecently boolean “Recently Moved Far, assuming is held”

movedRecently boolean True if the cube has recently moved; false otherwise.

NoTarget boolean True if the cube is not visible; false otherwise. Optional

targetInfo TargetInfo This is included if the cube is observed. Optional

timeSinceHeld float The number of seconds since the cube was last held

timeSinceMoved float The number of seconds since the cube was last moved

timeSinceObserved float The number of seconds since the cube was last observed

timeSinceTapped float The number of seconds since the cube was last tapped

trackingState string Tracking State (“Idle” “TrackingConnected)

userHoldingCube boolean True if someone holding the cube; false otherwise.

visibleRecently boolean True if the cube is visually seen; false otherwise.

visTrackingRate string VSM Tracking Rate Request: “High” or “Low”

The CommInfo structure has the following fields:

Field Type Description

connectedCube string The identifier for the cube that Vector is connected with.

“(none)” if not connected with a cube.

connectionState string The state of the connection: “UnconnectedIdle”,

“PendingConnect”, “Connected”, “ScanningForCubes”,

“PendingDisconnect”

cubeData CubeData[] The cubes that Vector has received Bluetooth LE

advertisements from.

preferredCube string The identifier for the cube that Vector would prefer to

connect with, if available.

36 What does this mean if there are both?

Table 369: CCCInfo

parameters

Table 370: CitInfo

parameters

Table 371: CommInfo

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 266

Note: this implies that Vector will try first to connect with his preferred cube, and, if necessary, fall

back to the next first cube he can find.

The CubeData structure has the following fields:

Field Type Description

address string The MAC address of the cube

lastRssi int The last received “received signal strength indicator” (RSSI)

measurement from the cube.

The StateCountDown structure has the following fields:

Field Type Description

DisconnectingIn The duration before the connection will exit

SwitchingToBackgroundIn string

The SubscriberData structure has the following fields:

Field Type Description

ExpiresIn The duration before the connection will exit. This field is

only present if the subscriber has included a timeout.

Optional

SubscriberName string The name of the behavior (the ID) that requested this

connection.

SubscriptionType string “Background” or “Interactable”

The TargetInfo structure has the following fields:

Field Type Units Description

angle float degrees Relative angle to the cube face

distance float mm The distance to the cube (or cube center?)

distMeasuredByProx boolean True if the distance to the cube as measured by the time of

flight sensor.

70.2.12 Features

The features event is an array of structures with the following fields:

Field Type Units Description

default string
“none”,
“enabled”,

“disabled”

Whether or not the feature is enabled or disabled by default.

name string The name of the AI feature

override string “none”,
“enabled”,
“disabled”

Whether or not the feature is enabled or disabled

Table 372: CubeData

parameters

Table 373:

StateCountDown

parameters

Table 374:

SubscriberData

parameters

Table 375: TargetInfo

parameters

Table 376: Feature

event parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 267

70.2.13 Habitat

The habitat event is sent to convey information about being in, and driving around in the habitat

tray. See Chapter 5 for a brief description of the habitat. The event is a structure with the

following fields:

Field Type Units Description

habitatState string HabitatState Whether or not Vector has detected his habitat (tray). See

habit state enumeration for possible values.

reason string “CliffDetected”

stopOnWhiteEnabled string “yes”, “no”

whiteThresholds string Example: “[400,400] 0 readings so far"”

The HabitatState enumeration has the following possible values:

State Description

InHabitat Vector is in the habitat area.

NotInHabitat Vector is not in the habitat.

Unknown Vector does not (yet) know if he is in the habitat.

70.2.14 Held In Palm

Not implemented?

70.2.15 IMU State

When an IMU state event is sent, the event structure has the following fields:

Field Type Description

fall_impact_count uint Fall impact count

70.2.16 Intents

The intents events can come in two different forms. In one kind, as an array of the following

structure:

Field Type Description

intentType string “user” or “cloud”

list string[] A list of the intent names available for this type of intent.

type string “all-intents”

In the other as a structure for a single intent in response to a user interaction:

Field Type Description

intentType string “user”

type string “current-intents”

Table 377: Habitat

event parameters

Table 378: Habitat

state enumeration

Table 379: IMU state

event parameters

Table 380: Intents

structure parameters

Table 381: Intents

structure parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 268

value string The intent from the cloud

70.2.17 Microphone data (MicData)

See also section 76.5 Beat Detection.

The microphone data event is a structure with the following fields:

Field Type Units Description

activeState boolean True if a voice has been detected.

beatDetector BeatDetector Information about the beat(s) heard

delayTime float ms

direction uint The direction to the origin of the strongest sound.

directions uint[] The confidence in each of the directions

latestNoiseFloor float A measure of the ambient noise level.

latestPowerValue float A measure of the most recent sound loudness

maxConfidence int The maximum confidence value in the directions array

selectedDirection uint The direction that is picked for the origin of the sound of

interest.

time float seconds The time that this occurred at (seconds since power on)

triggerDetected boolean True if the trigger word has been detected

The BeatDetector structure has the following fields:

Field Type Units Description

confidence float How confident the analysis is in the tempo measurement.

tempo_bpm float beats /
minute

The measured number of beats per minute.

70.2.18 Mood

These structures are similar to, but differ from, those in Chapter 29.

When mood event is sent, the event structure has the following fields:

Field Type Units Description

emotionEvent string The name of the event (see appendix K Table 641: The emotion

event names). Optional

info Info[] This is sent when the event is first subscribed to. Optional.

moods Mood[] An array emotion event structures (see below).

simpleMood string One of the simple mood names. Optional

time float seconds The time that this occurred at (seconds since power on)

Table 382: Microphone

data event parameters

Table 383: BeatDetecto

parameters

Table 384: Mood event

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 269

The Emotion structure has following fields:

Field Type Description

emotionType string The dimension or type of emotion (“Happy”, “Confident”,

“Stimulated”, “Social”, or “Trust”)

max float The maximum value that the dimension can take on.

min float The minimum value that the dimension can take on.

The Info structure has following fields:

Field Type Description

emotions Emotion[] An array of each emotion dimension and its range of values.

(Some are in the range -1..1, other are 0..1)

simpleMoods dictionary This dictionary maps a mood name (e.g. “Frustrated”) to a

dictionary mapping emotion type (e.g. “Happy”) to a floating

point value.

The Mood structure has following fields:

Field Type Description

emotion string The dimension or type of emotion (“Happy”, “Confident”,

“Stimulated”, “Social”, or “Trust”)

value float The value to add to the emotional state. The range is -1 to 1

70.2.19 NavMap

The NavMap events are used to transfer the current navigational map, and location of items in the

map. Map events won’t be sent unless the application has sent a request to enable the events. (See

section 70.3.7 NavMap)

The navigation map events include a type field that describes how to interpret the rest of the

structure. Note: the observed object events are also sent to NavMap subscriber, to update their

positions.

When the map is sent, there are several different structures: one to begin, one or more contents, and

then one to end. The beginning has the following fields:

Field Type Description

mapInfo MapInfo A description of the map as a whole.

originId uint Which version of the map this information is for (0 for none or

unknown). See Chapter 20 for a description of the mapping

origin id.

type string “MemoryMapMessageVizBegin”

Table 385: Emotion

structure parameters

Table 386: Emotion Info

structure parameters

Table 387: Emotion

affector parameters

Table 388: Map begin

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 270

The MapInfo is used to describe the map as a whole. It has the following fields:

Field Type Units Description

identifier string Unique name of the map version

rootCenterX float mm The X coordinate of the maps center

rootCenterY float mm The y coordinate of the maps center

rootCenterZ float mm The z coordinate of the maps center

rootDepth int The depth of the quad tree: the number levels to the leaf nodes.

rootSize_mm float mm The length and width of the whole map. (The map is square).

This is followed by a stream of the following structure:

Field Type Description

originId uint The generation/version of the map this information is for (0 for

none or unknown). See Chapter 20 for a description of the

mapping origin id.

seqNum uint Each part of the map transfer has a different sequence number.

quadInfos QuadInfo[] The individual elements of the map.

type string “MemoryMapMessageViz”

The QuadInfo is “an individual sample of Vector's [navigation] map. This quad's size will vary and

depends on the resolution the map requires to effectively identify boundaries in the environment.”

It has the following fields:

Field Type Description

colorRGBA uint32 Suggested color for the area of the map, used when visualizing

the map.

content string A tag of what Vector has identified as located in this area.

“Unknown”, “ClearOfObstacle” , “ClearOfCliff”,

“ObstacleCube”, “ObstacleCharger”, “ObstacleProx”,

“ObstacleProxExplored”, “ObstacleUnrecognized”, “Cliff”,

“InterestingEdge”, “NotInterestingEdge”

depth uint32 The depth within the tree.

The end of the map transfer the following fields:

Field Type Description

originId uint The generation/version of the map this information is for (0 for

none or unknown). See Chapter 20 for a description of the

mapping origin id.

robot Pose The robot’s position and orientation within the map.

type string “MemoryMapMessageVizEnd”

Table 389: MapInfo

structure

Table 390: Map

message parameters

Table 391: QuadInfo

structure

Table 392: Map end

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 271

The Pose structure has the following fields:

Field Type Units Description

qW float Part of the rotation quaternion

qX float Part of the rotation quaternion

qY float Part of the rotation quaternion

qZ float Part of the rotation quaternion

x float The x coordinate

y float The y coordinate

z float The z coordinate

The cube location is updated with an event with the following fields:

Field Type Description

cubes Cube[] A list of the cube’s location and orientatios

type string “MemoryMapCubes”

The Cube structure has the following fields:

Field Type Units Description

angle float degrees Relative angle to the cube face

x float mm The x coordinate

y float mm The y coordinate

z float mm The z coordinate

A face location is updated with an event with the following fields:

Field Type Description

faceID int The identifier for the face that was observed

pose Pose The face position and orientation

type string “MemoryMapFace”

70.2.20 Observed Objects

The observed object event includes a type field that describes how to interpret the rest of the

structure.

The deleted face event is sent when Vector no longer sees a given face. The structure has the

following fields:

Field Type Description

faceID int The identifier for the face that was removed.

type string “RobotDeletedFace”

Table 393: Pose

parameters

Table 394: Map cube

location parameters

Table 395: Cube

parameters

Table 396: Map face

location parameters

Table 397: Deleted face

event parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 272

The deleted object event is sent when Vector no longer sees a given object. The structure has the

following fields:

Field Type Description

objectID int The identifier for the object that was removed.

type string “RobotDeletedLocatedObject”

This observed face event is sent while Vector sees and tracks a face in his view. The structure has

the following fields:

Field Type Description

faceID int The identifier for the face that was observed

name string Optional

originID uint Which version of the map this pose is in (0 for none or

unknown). See Chapter 20 for a description of the mapping

origin id.

timestamp uint The event time stamp (milliseconds since power on)

type string “RobotObservedFace”

This observed object event is sent while Vector sees and tracks a face in his view. The structure

has the following fields:

Field Type Description

isActive int 1, 0

objectID int The identifier for the face that was observed

objectType string “UnknownObject”, “Block_LIGHTCUBE1”,

“Block_LIGHTCUBE2”, “Block_LIGHTCUBE3”,

“Block_LIGHTCUBE_GHOST”, “Charger_Basic”,

“CustomType00”, “CustomType01”, “CustomType02”,

“CustomType03”, “CustomType04”, “CustomType05”,

“CustomType06”,”CustomType07”, “CustomType08”,

“CustomType09”, “CustomType10”, “CustomType11”,

“CustomType12”, “CustomType13”, “CustomType14”,

“CustomType15”, “CustomType16”, “CustomType17”,

“CustomType18”,”CustomType19”, “CustomFixedObstacle”

timestamp uint The event time stamp (milliseconds since power on)

type string “RobotObservedObject”

Note the code has object observed events sent on two websockets!

70.2.21 Power

The power event is a structure with the following fields (or an array of these structures):

Field Type Description

powerSaveEnabled boolean True if in power saving mode, false otherwise

powerSaveRequesters JSON string A string. The square bracketed and internally has a comma

delimited list of the names of the modules requesting that the

system go into low power state. The names are not quoted. An

Table 398: Deleted

located object event

parameters

Table 399: Observed

face event parameters

Table 400: Observed

object event parameters

Table 401: Power event

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 273

empty list is [].

70.2.22 Sleeping

The sleeping event is structure with the following fields:

Field Type Units Description

last_sleep_reason string Example: “Emergency”, “Sleepy” Optional

last_wake_reason string Possibly: Jolted, NotInAir, PickedUp, Poked, Sound,

LightsOn

“NotSleepy”, “Poked” Optional

reaction_state string Example: “NotReacting”, “TriggerWord” Optional

sleep_cycle string “Awake”, “CheckingForPerson”, “Comatose”, “DeepSleep”,

“EmergencySleep” , “GoingToCharger”,

“HeldInPalmSleep”, “LightSleep”, “Nothing”,

“PreSleepAnimation”, “SleepOnCharger”, “SleepOnPalm”

Optional

sleep_debt_hours float hours This goes up the longer he is active, and down as he sleeps.

Optional

See Chapter 8 for a brief description of the sleep debt.

70.2.23 SoundReactions

See also section 70.2.23 SoundReactions

The sound reaction event is a structure with the following fields:

Field Type Units Description

activeState boolean True if a voice has been detected. False otherwise.

confidence int The confidence in the direction.

direction uint The index of the direction to the origin of the strongest

sound.

isTriggered boolean True if sound activity (above the noise level) has been heard

latestNoiseFloor float A measure of the ambient noise level.

latestPowerValue float A measure of the most recent sound loudness

powerScore float A measure of how loud it is at this instance.

powerScoreAvg float A measure of loud it has been over the past few seconds.

powerScoreThreshold float This is greater than or equal to the powerScoreMinThreshold.

Note: this value can be less than the latestNoiseFloor.

powerScoreMinThreshold float

selectedDirection uint The direction that is picked for the origin of the sound of

interest.

time float seconds The time that this occurred at (seconds since power on)

triggerDirection uint The index of the direction register when the sound

activitywas most recently heard.

triggerConfidence int The confidence in the trigger direction.

Table 402: Sleeping

event parameters

Table 403:

SoundReactions event

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 274

triggerScore float A score given to how likely the trigger was correctly

detected.

70.2.24 Speech Recognizer

The speech recognizer event is structure with the following fields (or an array of these structures):

Field Type Units Description

endSampleIndex uint index

endTime_ms uint ms

result string The text said, e.g. “hey vector”

notch boolean

playback boolean

score uint A score given to how likely the trigger was correctly

detected.

startSampleIndex uint index

startTime_ms uint ms

70.2.25 Touch Sensor

The touch sensor event message has the following fields:

Field Type Description

calibrated string “yes” or “no”

count uint

enabled string “true” “false”

esn string The robot’s electronic serial number.

osVersion string The version of the software running on Vector.

70.2.26 Vision Schedule Mediator

The vision schedule event message has the following fields:

Field Type Units Description

fullSchedule Schedule[] When the modes run and such

numActiveModes uint count The number of vision modes that are currently enabled.

patternWidth uint

The Schedule structure has the following fields:

Field Type Units Description

offset uint frames

updatePeriod uint frames The number of frames between updates.

Table 404: Speech

recognizer event

parameters

Table 405: Touch

sensor event

parameters

Table 406: Vision

schedule mediator event

parameters

Table 407: Schedule

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 275

visionMode string The name of the vision processing step.

70.3. POSTED EVENTS

This section describes the events posted by Vector.

70.3.1 Behaviors

The following command is sent to submit a behavior. Not sure if it bypasses the condition checks.

Field Type Description

behaviorName string The name of a behavior. TBD: is the identifier?

presetConditions boolean Force the behavior conditions to evaluate to this; if true, the

behavior has “met” its conditions

70.3.2 Cubes

The following command is sent to enable and disable features on the cube:

Field Type Description

connectCube boolean Connect to the cube. Optional

disconnectCube boolean Disconnect from the cube. Optional

flashCubeLights boolean Flash the cube’s lights. Optional

forgetPreferredCube boolean Forget (unpair with) the cube that Vector is currently using.

Optional

subscribeBackground boolean If true, subscribe to

If false, unsusbscribe. Optional

subscribeInteractable boolean If true, subscribe to events related to interacting with the

cube.

If false, unsusbscribe. Optional

subscribeTempBackground boolean If true, subscribe to

If false, unsusbscribe. Optional

subscribeTempInteractable boolean If true, subscribe to

If false, unsusbscribe. Optional

70.3.3 Features

The feature settings can be enabled, disabled, or reset. The posted structure includes a type field

that describes how to interpret the rest of the structure.

The following command is sent to enable or disable a feature:

Field Type Units Description

name string The name of the AI feature to enable or disable.

override string “none”,
“enabled”,

“disabled”

Whether or not the feature should be enabled or disabled

Table 408: Behavior

parameters

Table 409: Cube control

parameters

Table 410:

Enable/disable Feature

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 276

type string “override”

The following command is sent to reset all of the features to their default state:

Field Type Description

type string “reset”

70.3.4 Habitat

The following command is sent to force Vector to think that he is in or out of his habitat:

Field Type Description

forceHabitatState string The state to set the habit state to. See Table 378: Habitat

state enumeration for possible values.

70.3.5 Intent

The following command is sent to submit an intent to AI engine:

Field Type Description

intentType string The name of the intent.

request string

70.3.6 Mood

 The following command is sent to enable and disable features on the cube:

Field Type Description

Confident float How confident Vector is. -1…1. Optional

Happy float How happy Vector is. -1…1. Optional

Social float How social Vector is feeling. -1…1. Optional

Stimulated float How stimulated Vector is feeling. 0…1. Optional

Trust float How trusting Vector is feeling. 0…1. Optional

70.3.7 NavMap

The following command is sent to request an updated map:

Field Type Description

update boolean True to request an updated map be sent

Table 411: Reset all

features parameters

Table 412: Habitat

setting parameters

Table 413: Intent sensor

event parameters

Table 414: Mood

parameters

Table 415: NavMap

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 277

70.3.8 Power

The following command is sent to force Vector into (or out of) a power saving state:

Field Type Description

enablePowerSave boolean True if Vector should enter a power save state, false

otherwise

70.3.9 Touch Sensor

The following command is sent to enable and disable the touch sensor:

Field Type Description

enabled string “true” to enable the touch sensor.

“false” to disable the touch sensor.

Optional

resetCount string “true” to reset the touch count. Optional.

Table 416: Power save

parameters

Table 417: Touch

sensor control

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 278

CHAPTER 17

The Cloud Services

This chapter describes the remote servers that provide functionality for Vector.

 JSON document storage server

 The crash uploader

 The diagnostic logger

 The token/certificate system

 The natural language processing

71. CONFIGURATION

The server URLs are specified in

/anki/data/assets/cozmo_resources/config/server_config.json

The path to this JSON file is hardcoded in vic-cloud

Element Description & Notes

appkey A base64 token used to communicate with servers.

“oDoa0quieSeir6goowai7f”

check The server to use for connection checks

chipper The natural language processing server

jdocs The remote JSON storage server

logfiles The server to upload log files to

tms The token server where Vector gets authentication items like

certificates and tokens

The URL to upload crash logs to is given in

/anki/etc/vic-crashuploader.env

The URL to automatically download OTA files from is given in

/anki/etc/update-engine.env

The DAS server to contact is given in

/anki/data/assets/cozmo_resources/ config/DASConfig.json

(This path is hardcoded in vic-DASMgr)

Table 418: The cloud

services configuration

file

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 279

72. JDOCS SERVER

The Vic-Cloud services stores information on a “JDocs” server. This unusual name appears to be

short for “JSON Documents.” Vic-Cloud uses the “jdocs” tag in the cloud services configuration

file to know which server to contact. It uses the file

/anki/data/assets/cozmo_resources/ config/engine/jdocs_config.json

to set how often it contacts the server. (The path to this JSON file is hardcoded in

libcozmo_engine.) The configuration also lists the base name of the json file (without the .json

extension) used to store the jdoc file locally.

The interactions are basic: store, read, and delete a JSON blob by an identifier. The description

below37 gives the JSON keys, value format. It is implemented as gRPC/protobuf interaction over

HTTP.

72.1. JDOCS INTERACTION

The JDoc message has the following fields:

Field Type Description

client_meta
string Probably an empty string.

doc_version uint64 A number used to uniquely identify changes to the setting structure, and be

able to tell which ones is the more recent settings. Most often this is the

number of times that the settings have been changed.

fmt_version uint64 The version number of the jdoc structure schema; this is always 1.

json_doc string The jdoc structure serialized as a string.

37 The protocol was specified in Google Protobuf. Vic-Cloud and Vic-Gateway were both written in Go. There is enough information
in those binaries to reconstruct significant portions of the Protobuf specification in the future.

Table 419: JSON

Parameters for JDoc

request

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 280

72.2. DELETE DOCUMENT

72.2.1 Request

The DeleteDocReq request message has the following fields:

Field Type Description

account
string The account to read from

doc_name string The name of the document to delete.

thing string The thing id is a ‘vic:’ followed by the serial number

72.2.2 Response

The DeleteDocResp response message has the following fields:

Field Type Description

latest_version
uint64 The current version of the document in the repository.

status string

72.3. ECHO TEST

72.3.1 Request

EchoReq

 data

72.3.2 Response

EchoResp

 data

Table 420: JSON

Parameters for JDoc

request

Table 421: JSON

Parameters for JDoc

request

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 281

72.4. READ DOCUMENTS

72.4.1 Request

The ReadDocsReq request message has the following fields

Field Type Description

account string The account to read from

items [] Array of names document names(?)

thing string The thing id is a ‘vic:’ followed by the serial number

72.4.2 Response

ReadDocsResp

 items

The ReadDocsResp response message has the following fields:

Field Type Description

items ReadDocsReq_i
tem[]

The documents (?)

72.5. READ DOCUMENT ITEM

72.5.1 Request

The ReadDocsReq_Item request message has the following fields

Field Type Description

doc_name
string The name of the document to request

my_doc_version UInt64 The version to retrieve(?)

72.5.2 Response

The ReadDocsResp_Item response message has the following fields:

Field Type Description

doc
JDoc The document structure.

status string

Table 422: JSON

Parameters for JDoc

read request

Table 423: JSON

Parameters for JDoc

read response

Table 424: JSON

Parameters for JDoc

read item request

Table 425: JSON

Parameters for JDoc

read item response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 282

72.6. WRITE DOCUMENT

72.6.1 Request

The WriteDocReq request message has the following fields

Field Type Description

account
string The account to write to

doc JDoc The document structure.

doc_name string The name of the document to write.

thing string The thing id is a ‘vic:’ followed by the serial number

72.6.2 Response

The WriteDocResp response message has the following fields:

Field Type Description

latest_doc_version
uint64 The current version of the document in the repository.

status string

72.7. OTHER AREAS

The vic-cloud service and the remove server perform periodic performance tests to check latency of

the DNS servers and cloud data servers.

Table 426: JSON

Parameters for JDoc

write request

Table 427: JSON

Parameters for JDoc

write response

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 283

73. NATURAL LANGUAGE PROCESSING

The audio after a “Hey Vector” is sent to servers for processing. They send a response back, in the

form of an intent. This is a code and a structure that represents an action to carry out in response to

the spoken request, query, or statement; it may represent the action requested, an answer to a

query, or an action that emotionally responds to what was said. The intents received are listed in

the “Cloud Intent” column in Appendix J, Table 640: Mapping of different intent names.

73.1.1 Response

The request sent to the server has the following fields

Field Type Description

session string Weirdo hex line thing

type string e.g. “streamOpen”

Not sure where the stream open goes. Does it upload the file, or live stream it?

73.1.2 Response

The server response message has the following fields

Field Type Description

intent string The type of intent

metadata string This can be an empty string, but it can also be a string with colon delimited

parameters. It often has the pattern “text: unquoted-string confidence: float

handler: LEX” The “text:” can be followed by transcription of the spoken

text, the “confidence:” followed by a floating point number representing

how confident the speech-to-text engine is in the transcription.

parameters JSON string This is a string containing the JSON serialization of the intent parameters.

type string e.g. “result”

73.2. PARAMETERS FOR THE CLOUD INTENTS

The following are the parameters for each of the cloud intents. These structures are serialized as a

JSON string and passed in the parameters field of the ASR response.

This intent_clock_settimer_extend intent has the parameter following fields:

Field Type Units Description

timer_duration int seconds The number of seconds to set the timer to.

This intent_global_delete_extend intent has the parameter following fields:

Field Type Units Description

entity_behavior_deletable bool

Table 428: Parameters

for ASR request

Table 429: Parameters

for ASR response

Table 430:

intent_clock_settimer_ex

tend parameters

Table 431:

intent_global_stop_dele

table parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 284

This intent_global_stop_extend intent has the parameter following fields:

Field Type Units Description

entity_behavior_stoppable bool

This intent_imperative_eyecolor_extend intent has the parameter following fields:

Field Type Units Description

eye_color string The name of the color to set the eye color to

This intent_imperative_volumelevel_extend intent has the parameter following fields:

Field Type Units Description

volume_level string

This intent_knowledge_response_extend intent has the parameter following fields:

Field Type Description

answer string The text to be spoken

answer_type string “NoResultCommand”

query_tyext string The text of the question asked

This intent_message_playmessage_extend intent has the parameter following fields:

Field Type Units Description

given_name string The name of the person to send the message to

This intent_names_username_extend intent has the parameter following fields:

Field Type Units Description

username string The name of the user

This intent_photo_take_extend intent has the parameter following fields:

Field Type Units Description

entity_photo_selfie string Empty string if taking a photo, “photo_selfie” if

taking a selfie.

Table 432:

intent_global_stop_ext

end parameters

Table 433:

intent_imperative_eyeco

lor_extend parameters

Table 434:

intent_imperative_volum

elevel_extend

parameters

Table 435:

intent_knowledge_respo

nse_extend parameters

Table 436:

intent_message_playme

ssage_extend

parameters

Table 437:

intent_names_username

_extend parameters

Table 438:

intent_photo_take_exten

d parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 285

This intent_weather_extend intent has the parameter following fields:

Field Type Units Description

condition string The current weather conditions. One of “Clear”,

“Cloudy”, “Cold”, “Rain”, “Snow”, “Stars”,

“Sunny”, “Thunderstorms”, or “Windy”

is_forecast string “false” or
“true”

“false” if it is the current weather conditions; “true”

if forecasted weather conditions.

local_datetime string The local time (where the weather conditions

apply) in UTC ISO 8601 format.

speakable_location_string string The location name that Vector could employ in his

verbal description of the temperature.

temperature string degrees The current or forecasted temperature, in the given

units.

temperature_unit string F or C, for the units

74. LOGS AND TRACE DATA

There are 4 log uploading systems

 Two log uploaders

 A crash minidump log uploader

 DAS event logs upload

74.1. LOG UPLOADER

Vector has two different log uploaders:

74.1.1 vic-log-upload

vic-log-upload sends logs to an Amazon S3 server, with the bucket information in the server-

config.json file. See chapter 33, section 145.3 Gathering logs, regularly for more details on this

file.

74.1.2 vic-logmgr-upload

This section describes how logs are uploaded by vic-logmgr-upload. That program is not called.

See chapter 33, section 145.2 Vic-logmgr-upload for more details.

The logs are uploading by performing a HTTP PUT to the server. The URL is the “logfiles” URL

in the server configuration file, with a file name of the form:

victor- electronic serial number - timestamp - pid .log.gz

Where the time stamp has the following format:

year-month-day-hour-minute-seconds

Table 439:

intent_weather_extend

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 286

The HTTP headers are:

HTTP header Description

Anki-App-Key The appKey from the server configuration file.

Usr-RobotESN Vector’s serial number

Usr-RobotOSRevision The OS revision string from /etc/os-version-rev

Usr-RobotOSVersion The OS version string from /etc/os-version

Usr-RobotRevision The Anki revision string from /anki/etc/revision

Usr-RobotTimestamp The time of Vector’s internal clock.

Usr-RobotVersion The Anki version string from /anki/etc/version

Usr-Username

74.2. CRASH UPLOADER

Minidumps produced after a crash are uploaded to a backtrace.io server using a HTTP POST by

the vic-crashuploader program. The HTTP headers are:

Form fields Description

attachment_messages.log The “.log” file associated with the minidump. This is optional;

only included if /run/das_allow_upload exists

hostname ${hostname}

robot.esn Vector’s serial number

robot.os_version The OS version string from /etc/os-version

robot.anki_version The Anki version string from /anki/etc/version

upload_file The minidump “.dmp” file

 The URL (including the key) is set in the vic-crashuploader configuration file. See chapter 33

section 145.7 Crash Logs for more details on vic-crashuploader and how minidumps are acquired.

Table 440: Log upload

HTTP header fields

Table 441: Crash

upload form fields

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 287

74.3. DAS MANAGER

DAS Manager uploads event traces to an Amazon “Simple Queue Service” (SQS) server, with the

blobstore specified in the “logfiles” field of the server_config.json configuration file. Amazon’s

API uses the following key/value pairs in a URL encoded form:

Keys Value

Action SendMessage

MessageAttribute.1.Name DAS-Transport-Version

MessageAttribute.1.Value.DataType Number

MessageAttribute.1.Value.StringValue 2

MessageAttribute.2.Name Content-Encoding

MessageAttribute.2.Value.DataType String

MessageAttribute.2.Value.StringValue gzip, base64

MessageAttribute.3.Name Content-Type

MessageAttribute.3.Value.DataType String

MessageAttribute.3.Value.StringValue application/vnd.anki.json; format=normal;

product=vic

MessageBody

Version 2012-11-0538

Note: there may be a body of compressed JSON data. These values are hardcoded in vic-dasmgr

and libcozmo_engine. The URL is set in the vic-dasmgr configuration file.

Each entry of the upload JSON data includes a profile id; it can be tied to the user account, but

Unless you create an account and log in, Analytics Data is stored under a unique ID and

not connected to you.

See Chapter 33, section 147.2 DAS for more information on the DAS events and configuration file.

75. REFERENCES AND RESOURCES

Davis, Jason; File Attachments in Backtrace, Backtrace.io

https://help.backtrace.io/en/articles/1852523-file-attachments-in-backtrace

38 This date is very far in the past, before Vector or Cozmo were developed. This was the time frame of the Overdrive product
development.

Table 442: DAS

Manager SQS key-value

pairs

https://help.backtrace.io/en/articles/1852523-file-attachments-in-backtrace

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 288

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 289

PART IV

Advanced Functions

This part describes items that are Vector’s primary function.

 AUDIO INPUT. A look at Vector’s ability to hear spoken commands, and ambient sounds.

 IMAGE PROCESSING. Vector vision system is sophisticated, with the ability to recognize

marker, faces, and objects; to take photographs, and acts as a key part of the navigation

system.

 MAPPING, NAVIGATION. A look at Vector’s mapping and navigation systems

 ACCESSORIES. A look at Vector’s home (charging station), companion cube and custom

objects.

drawing by Steph Dere

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 290

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 291

CHAPTER 18

Audio Input

This chapter describes the sound input system:

 The audio input

 The audio filtering, and triggering of the speech recognition

76. AUDIO INPUT

The audio input is used to both give Vector verbal interaction, and to give him environmental

stimulation:

Automatic Speech

Recognition &

Language

understanding

Spatial Audio

Processing

Noise

Reduction

Voice Activity

Detector

4 MEMs

Microphones

4 MEMs

Microphones

4 MEMs

Microphones

Feature

extraction

Beats per minute

Behavior &

Animation

Engines

Wake Word

SDK

applications

Opus

CODEC

 Spatial audio processing localizes the sound of someone talking from the background

music.

 The feature extraction detects the ambient activity, and the tempo of the music. If the

tempo is right, Vector will dance to it. This also provides basic stimulation to Vector.

 Noise reduction makes for the best sound.

 Voice activity detector usually triggered off of the signal before the beam-forming.

 A wake word is used to engage the automatic speech recognition system. Note: the wake

word is also referred to as the trigger word.

 A CODEC is used to compress the audio before sending it to the remote server; Alexa

Voice Services use the Opus audio CODEC.

 The speech recognition system is on a remote server. The audio sent to the automatic

speech recognition system is compressed to reduce data usage.

Figure 64: The audio

input functional block

diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 292

The responsibility for these functions is divided across multiple processes and boards in Vector:

Chipper & Lex

Automatic Speech

Recognition & Language

understanding

UART

Body-Board

SDK applicationsVic-Gateway

4 MEMs

Microphones

4 MEMs

Microphones

4 MEMs

Microphones

Vic-Anim

Vic-Robot

Vic-Spine

SPI

Alexa

Vic-Engine

Alexa Voice Services

Vic-Cloud

Note: providing the audio input to the SDK (via Vic-gateway) was never completed. It will be

discussed based on what was laid out in the protobuf specification files.

The audio processing blocks, except where otherwise discussed, are part of Vic-Anim. These

blocks were implemented by Signal Essence, LLC. They probably consulted on the MEMs

microphones and their configuration. Although the Qualcomm family includes software support

for these tasks, as part of the Hexagon DSP SDK; it is believed that Signal Essence did not take

advantage of it.

76.1. THE MICROPHONES AND CONVERSION TO AUDIO SAMPLES

The microphone array is 4 far-field MEMs PDM microphones that sample the incoming sound

and transfer the samples to body-board. (See Chapter 4 section 11.4.6 PDM Microphones for a

description of the low-level bit-moving.)

DMA Buffer

UART Tx

Buffer

DMA Buffer

4 MEMs

Microphones

2 MEMs

Microphones

4 MEMs

Microphones

2 MEMs

Microphones

Head BoardSeparate into

left & right

Separate into

left & right

Right
Filter

Left
Filter

Right
Filter

Left
Filter

PCM

The body-board samples each microphone at 1.5 M samples/sec – but at only 1 bit/sample! It

passes the stream of samples thru a filter, produces audio at 15,625 samples/sec, with 16

bits/sample (effectively it may have anything in the range 10 to 16 bits, and padding out the rest).

The filter also acts as a low pass filter, removing high frequency sampling artifacts. The most

important part is that it preserves “phase information” so that the beam forming and direction

finding steps work well. (More on this in a later section).

The audio samples are transferred to the Vic-spine module (part of Vic-robot) in regular

communication with the head-board. The message from the body-board to the head board for

sending 4 channels of audio samples includes 80 samples per channel (320 samples total).

Figure 65: The audio

input architecture

microphone array

architecture

Figure 66: Sampling

the microphones and

converting to PCM

format

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 293

The samples are extracted from the received message and forward to the Vic-Anim process. The

software treats the audio as if it its sample rate was 16,000 samples/sec. (“As a result, the pitch is

altered by 2.4%.”) The signal processing is done in chunks of 160 samples.

76.1.1 The likely operation

Each SPI is configured to run at 3Mb/s (the slowest it can drive the microphones), using a DMA

to transfer data into a buffer (~1536 bytes in size). The DMA’s are configured to use circular

mode, where they never stop; instead they automatically wrap around to the start of the buffer

after filling it. Because both SPI’s are tied together, only one DMA is configured to generate

interrupts.

The input system triggers the SPIs to start gathering the data into their respective buffers. After

that:

1. When the DMA has filled half of the buffer, it generates an interrupt. The filtering on all

four channels is initiated for this half of the buffer, puts the result into the outgoing

message buffer.

2. When the DMA has filled the second half of the buffer, it generates and end of transfer

interrupt. The filtering on all four channels is initiated for this second half of the buffer,

again putting the result into the outgoing message buffer. (In the mean time, the DMA has

automatically looped back to the start of buffer and kept the SPI transferring the bits.)

3. If the outgoing buffer is full (i.e., after the DMA buffers have been filled twice), the UART

transmit is initiated.

It is possible that the firmware uses two buffers, one that is filled by the filtering, and another that

is sending data on the UART, and swapping every time it’s filled. It is more likely that only that

the body-board fills the same output buffer as data is being sent from it to the head-board, to save

on memory usage. Although the SPI is 2-3x faster than the UART, the filter stage takes 6 bits for

every for every data bit that is sent to the head board. The UART can effectively send data at least

2x faster than the SPIs receive.

 Each microphone is driven at 1.5 M samples/sec (half the SPI clock frequency). The ratio

between this input sample rate and the output sample rate (15,625) – called the decimation

– is 96:1.

 Since it takes 96 input samples (bits) to get one output 16-bit sample39, the bit-rate

reduction is 6:1.

Altogether the audio sampling, filtering/decimation, and sending to the head-board uses at least

4KB of the MCU’s 8KB of RAM.

39 The filtering may give the audio samples an effective range ~11 or 12 bits. The Customer Care Information Screen (CCIS) shows the
microphones to be about 1024 when quiet.

transferring 4Mb/s

from 4 microphones

and filtering it into

PCM audio

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 294

76.2. SPATIAL AUDIO PROCESSING

The spatial audio processing uses multiple microphones to pick-out the desired sound signal and

cancel out the unwanted. Note: The spatial audio processing is bypassed until voice activity has

been detected. The direction finding can isolate the audio from 12 different directions, each 30°

wide:

30°

Has a signal

strength in that

direction, and audio

stream

Note: forward is 0°.

The direction finding and isolation is typically a two-stage process:

Source

localization
Beam forming

Noise

reduction

Feature

extraction

Audio

Samples

THE SOURCE LOCALIZATION estimates direction of arrival of the person talking.

BEAM-FORMING combines the multiple microphone inputs to cancels audio coming from other

directions.

The output of this stage includes:

 A histogram of the directions that the sound(s) in this chunk of audio came from. There

are 12 bins, each representing a 30° direction.

 A measure of the background noise

 The direction that is picked for the origin of the sound of interest

 A confidence value for that direction

 The sound stream isolated for the picked direction, in the form of 160 16-bit PCM audio

samples.

See also:

 Chapter 15, section 50.5 Audio Processing Mode for a potential method to enable and

disable the spatial sound processing;

 Chapter 15, section 50.4 Audio Feed (from the Microphones) for potential access to the

audio stream via the HTTPS API.

Figure 67: The audio

can be isolated into

one of 12 different

directions

Figure 68: Typical

spatial audio

processing flow

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 295

76.3. NOISE REDUCTION

Noise reduction identifies and eliminates noise and echo in the audio input:

Voice

Activity

Detector

Vic-Cloud

Spatial

Audio

processing

Echo

cancellation

Noise

suppression

Auto Gain

control

ACOUSTIC ECHO CANCELLATION cancels slightly delayed repetitions of a signal.

NOISE SUPPRESSION is used to eliminate noise.

The combination of spatial processing and noise reduction gives the cleanest sound (as compared

with no noise reduction and/or no spatial processing).

Vector is also likely to ignore the microphones while sounds are playing.

76.4. DETECTING ACTIVITY

Vector includes a module to detect sound activity (as distinguished from noise). The sound

reaction behavior uses this to stimulate Vector from his sleep, get his attention, and encourage him

to be more active. One way this could be done is through a set of filters to measure power levels:

Low Pass

filter
Filter

Noise floor

Sound Level

Power

Threshold

Percentile

Filter

latest Sound

detected

The TBD {loudness estimator} might use an algorithm similar to the following steps:

1. First, the sound filter is to make the sound better reflect how our ears hear it, and/or

remove elements that would cause false triggers. Two popular approaches are “equal

loudness” by David Robinson and “a-weighting.” Both take into account how people

perceive sounds loudness by giving less weight to some frequencies regions (the very low

and high), and more weight to others (the very middle).

2. Every few tens or hundreds of milliseconds the “power” level of the sound is computed.

This is the logarithm of the root mean square (RMS) of the filtered values –squaring each

value, averaging that, taking the square root and then computing its logarithm. Often this

calculation is rearrange to be a bit faster, by skipping the square root and adjusting the

logarithm scaling factor.

3. The computed power can then be compared against an estimate of the noise floor (the

generic ambient sound level), to see if there is some activity, even the beat of a music.

4. The power levels are also tracked for a second (or a few seconds). The values could be

averaged. Or the values could be sorted, from smallest to largest. The first value ~95% of

Figure 69: Typical

audio noise reduction

flow

Figure 70: Sound and

noise level estimator,

and activity detector

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 296

the way into the sorted before could be used as the current overall sound level. (This

avoids taking the loudest transient sound.).

The noise floor could be taken from the lowest value in the sorted array (step 4) – or the value that

is, say, 5% into the array can be treated as the noise floor. Or it could be estimated by taking a low

pass filter on the lowest values. The key is that so even though the sound level is increasing, the

noise level is it is slow move up. A low pass filter has the advantage of not taking a large amount

of memory – using a large the percentile filter window (and using the lowest value in it) would

take much more memory to prevent confusing several minutes of music with silence.

76.5. BEAT DETECTION

The details of how Vector’s beat detection is implemented are not known, but beat detection is a

common signal processing task. This section describes a typical implementation.

The beat detection is made of two related sub-functions. The first is a fast detector that can be used

for quick dance responses in time to the music. The second finds the tempo – the beats per minute

– of the music, which is also good indication that there is music playing (and not other activity).

Note: See chapter 25, section 111.1.1 Pitch tracker for how to find the pitch.

76.5.1 A quick beat-detector

A simple responsive beat detector works by filtering the sound thru a band pass filter (say with a

range of 100 Hz to 350 Hz) and then look for the magnitude to above a threshold:

Noise

Reduction
Detect beat

Band Pass

Filter

Once a beat is detected, it holds off sending another event until the signal has dropped below a

threshold for at least half a second or more. Another timer may be used to tell when the music has

stopped: the timer is reset whenever a new beat is detected, and expires if a beat has not been

detected for a few seconds.

Although simple to implement, loud noises can trick it, and it is not very good at measuring the

tempo (the speed of the music in beats per second).

76.5.2 Tempo

A more accurate approach is to use a spectrogram to measure the tempo. The beats are very low

frequency signals in the spectrograph. Music might be in the range of 50-110bpm (0.7Hz to 2Hz).

The approach is to search the spectrogram in this frequency range for signals above a minimum

threshold (to screen out generic sounds), and pick the strongest.

Low Pass

Filter
FFT

Sound

samples
Pick tempo

Scoreboard

Down

sample

Figure 71: Typical

beat detection

Figure 72: Typical

tempo measurement

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 297

This will use an FFT to compute the spectrogram. It will need a wide window – a few seconds

wide – to detect the beats, since they are at such a low frequency. This is down-sampled to s lower

sampling rate – this reduces the memory required, and the amount of computation required to fit

the task at hand. The basic algorithm is:

1. Take the sound input, and perform a low pass filter in it; this eliminates aliasing noises that

can come down-sampling

2. Next is to down sample the audio to only a few samples per second, and hold the results in

a window a few seconds wide.

3. Periodically – every few seconds – an FFT is performed to create a new spectrograph.

Note: the window can be “rolling” (instead of being thrown out and repopulated each time)

to allow faster updates to the measured beats.

4. The FFT results are examined to find frequencies with a power above a threshold. These

are the potential beats (in Hz)

5. The beats are then tracked in a scoreboard. The scoreboard tracks which beats are

consistent and which are transitory. The beat-rates that haven’t been heard in a while are

discounted or cleared out with time.

6. A tempo, perhaps the highest persistent beats/minute, is then reported as the most likely

rate.

The drawback of this approach is that is “slow” and can’t be used to dance in time to the music

with. The time window to find slower beats (the ones about every second) is very long, it can take

a few seconds before it will have anything about the music beats.

76.5.3 Beat Detector Outputs

The beat detection modules produce several JSON structures for developer websocket and internal

use. The main structure has the following fields:

Field Type Units Description

beatInfo
BeatInfo[] Information on the beat (or different possible

tempos present in the music)

detectorInfo DetectorInfo Information from the detector on the beats

The DetectorInfo structure has the following fields:

Field Type Units Description

beatDetected
boolean True if a beat has just been detected.

latestConf float How confident the analysis is in the tempo

measurement.

latestTempo_bpm float beats /

minute

The measured number of beats per minute.

possibleBeatDetected string “yes” or
“no”

Whether or not a potential music beat was

detected.

Table 443: Beat

detection event

parameters

Table 444: DetectorInfo

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 298

The BeatInfo structure has the following fields:

Field Type Units Description

aboveThresh
boolean Are the beats per minute above a threshold??

conf float How confident the analysis is in the tempo

measurement.

tempo_bpm float beats /

minute

The measured number of beats per minute.

timeSinceBeat float seconds The number of seconds since the last beat; this can

useful for deciding that the music has stopped.

76.6. RECORDING TO A FILE

The microphone module can store sound – either raw or processed – to a wave file. This may be

for diagnostic purposes, left over as part of testing different microphone settings.

76.7. VOICE ACTIVITY DETECTOR AND WAKE WORD

The voice activity detector is given cleaned up sound from multiple microphones without beam-

forming. When it detects voice activity, then the spatial audio processing is fully enabled.40

Detecting that speaking is going on is more refined and specific than simply detecting that there is

some interesting sound.

The voice activity detector and the wake word are used so that downstream processing – the wake

word detection, and the automatic speech recognition system – are not engaged all the time. They

are both expensive (in terms of power and CPU load), and the speech recognition is prone to

misunderstanding.

When the voice activity detector triggers – indicating that a person may be talking – the spatial

audio processing is engaged (to improve the audio quality) and the audio signals are passed to the

Wake Word Detector.

The detector for the “Hey, Vector” is provided by Sensory, Inc. Pryon, Inc provided the detector

for “Alexa.” 41 The recognition is locale dependent, detecting different wake words for German,

etc. It may be possible to create other recognition files for other wake words.

When the “Hey, Vector” wake word is heard,

1. A connection (via Vic-Cloud) is made to the remote speech processing server for automatic

speech recognition.

2. If there was an intent found (and control is not reserved), the intent is mapped to a local

behaviour to be carried out. This is described in a later section.

76.7.1 Wake work configuration file

The configuration file for the wake word is located at:

/anki/data/assets/cozmo_resources/ config/micData/micTriggerConfig.json

40 Vector’s wake word detection, and speech recognition is pretty hit and miss. Signal Essence’s demonstration videos show much

better performance. The differences are they used more microphones and the spatial audio filtering in their demos. . Version 1.7

improved echo cancellation and wake word detection.
41 This appears to be standard for Alexa device SDKs.

Table 445: BeatInfo

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 299

This file has dictionary structure with the following fields:42

Field Type Description & Notes

alexa_pryon WakeWordLocale[
]

The wake word speech recognition models for Alexa in each of

the supported locales, using models for Pryon’s toolkit (the default

for Alexa Voice Services).

alexa_thf WakeWordLocale
[]

The wake word speech recognition models for Alexa in each of

the supported locales, using models for Sensory’s Truly

HandsFree toolkit.

hey_vector_thf WakeWordLocale
[]

The wake word speech recognition models for “Hey Vector” in

each of the supported locales, using models for Sensory’s Truly

HandsFree toolkit

A WakeWordLocale is used to map a language locale to the wake word recognition models to use.

This structure has the following fields:

Field Type Description & Notes

defaultModelType string e.g. “size_500kb” or “size_1mb”

locale string The IETF language tag of the human companion’s language

preference – American English, UK English, Australian English,

German, French, Japanese, etc.

default: “en-US”

modelList WakeWordModel[] The wake word speech recognition models, in a variety of sizes

Each WakeWordModel provides a set of word recognition models that can be used. The structure

has the following fields:

Field Type Description & Notes

dataDirectory string The path (relative to the TBD) holding the recognition models.

defaultSearchFileIndex uint The index of the model (in searchFileList) to use by default.

modelType string e.g. “size_500kb” or “size_1mb”

netFileName string Name of a file.

searchFileList WakeWordFile[] The wake word speech recognition models, in a variety of sizes

Each WakeWordFile structure has the following fields:

Field Type Description & Notes

searchFileIndex uint The index of the model (in searchFileList) to use by default.

searchFileList string The name of the file…? (relative to the data directory). “NA” if a

file name is not applicable.

42 The names of the structures here were created for clarity; they are not actually used in the files.

Table 446: The

micTriggerConfig

JSON structure

Table 447: The

WakeWordLocale

JSON structure

Table 448: The

WakeWordLocale

JSON structure

Table 449: The

WakeWordLocale

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 300

76.8. CONNECTIONS WITH VIC-GATEWAY AND SDK ACCESS

An application has access to the wake-word events and the received user intent events as they

occur. When the “Hey, Vector” wake word is heard,

1. A WakeWordBegin (see Chapter 14 section 50.2.3 WakeWord) event message is posted to

Vic-Engine and Vic-Gateway. Vic-Gateway may forward the message on to a connected

application.

2. A StimulationInfo (see Chapter 14, section 46.2.2 StimulationInfo) event message, an

emotion event “ReactToTriggerWord,” is posted to Vic-Gateway for possible forwarding to

a connected application.

3. A WakeWordEnd (see Chapter 14 section 50.2.3 WakeWord) event message is sent (to Vic-

Gateway for possible forwarding to a connected application) when the Vic-cloud has

received a response back. If control has not been reserved, and intent was received, the

intent JSON data structure is included.

4. If there was no intent found, a StimulationInfo (see Chapter 14, section 46.2.2

StimulationInfo) event message is post (to Vic-Gateway), with an emotion event such as

NoValidVoiceIntent

5. If there was an intent found (and control is reserved), a UserIntent (see Chapter 14, section

50.2.2 UserIntent) event is posted to Vic-Gateway for possible forwarding to a connected

application. In this case, the intent will not be carried out.

An external application can send an intent to Vector using the AppIntent command (see Chapter

15, section 50.3 App Intent).

76.8.1 Audio Stream

It is clear that Anki made provisions to connect the audio stream to Vic-Gateway but were unable

to complete the features before they ceased operation. The SDK would have been able to:

 Enable and disable listening to the microphone(s)

 Select whether the audio would have the spatial audio filter and noise reduction processing

done on it.

 Include the direction of sound information from the spatial audio processing (see section

76.2 Spatial audio processing)

 1600 audio samples; Note: this is 10x the chunk size of the internal processing size

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 301

77. CLOUD SPEECH RECOGNITION

The audio stream (after the “Hey Vector”) sent to a group of remote servers for processing. The

servers perform automatic speech recognition (ASR), language understanding steps, and craft a

response.

Vic-Cloud

Speech recognition

(ASR)

· Words
· Tone
· Intent

Language

understanding

· Words
· Tone
· Intent
· Referred to Entities

Dialog Manager

· Forms response

What the user said is mapped to a user intent. This is a code and structure that represents an action

to carry out in response to the spoken request, query, or statement; it may represent the action

requested, an answer to a query, or an action that emotionally responds to what was said. The

intent includes some supporting information – the colour to set the eyes to, for instance. Many of

the phrase patterns and the intent they map to can be found in Appendix J. The intent may be

further handled by Anki servers; the intent is eventually sent back to Vector.

The intent system does some replacement on the intent names and parameters43 from the cloud and

SDK application to names used internally within Vector’s engine.

Chipper, Lex, etc

Automatic Speech

Recognition & Language

understanding

Intent name and

parameter

substitution

SDK applicationsVic-Gateway

Vic-Cloud

Intent name and

parameter

substitution

Behavior /

Coordinator

It uses separate tables for the intents passed by the cloud and those passed from an SDK

application. With the cloud based intent,

1. Looks up to see if there is a rule matching the name of the passed intent. If there is no

match, the intent (may be) is passed to the next stage. If the internal intent name associated

with the rule will be used, and

2. Each of the passed intent parameter names is checked to see if the name should be changed

to an internal name. If so it is changed to the internal name; otherwise the parameter’s

passed name is (probably) used.

43 The complexity suggests that the development of the server, mobile application and Vector were not fully coordinated and needed this
to bridge a gap.

Figure 73: Typical

speech recognition

processes

Figure 74: The

filtering of intents

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 302

The intents passed by the SDK application also go thru a filtering phase:

1. Looks up to see if there is a rule matching the name of the passed intent. If there is no

match, the intent is discarded. If the internal intent name associated with the rule will be

used, and

2. Each of the passed intent parameter names is checked to see if the name should be changed

to an internal name. If so it is changed to the internal name; otherwise the parameter is

discarded.

The intent is also checked to see if it is enabled. Each intent can be associated with a feature flag;

if it is, the flag is looked up to see if the corresponding feature is enabled. (see also Chapter 30

section 134 Feature Flags).

An intent may initiate a behavior, or a coordinator. A coordinator is receptive to further intents in

addition to physical stimulation.

77.1. INTENT PARAMETERS

The global_delete intent has the parameter following fields:

Field Type Units Description

what_to_stop string

The global_stop intent has the parameter following fields:

Field Type Units Description

what_to_stop string

This imperative_eyecolor_specific intent has the parameter following fields:

Field Type Units Description

eye_color string The name of the color to set the eye color to

This imperative_volumelevel intent has the parameter following fields:

Field Type Units Description

volume_level string

This knowledge_response intent has the parameter following fields:

Field Type Units Description

answer string The text to be spoken(?)

query_text string The text of the question asked(?)

Table 450:

global_delete

parameters

Table 451: global_stop

parameters

Table 452:

imperative_eyecolor_sp

ecific parameters

Table 453:

imperative_volumelevel

parameters

Table 454:

knowledge_response

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 303

This meet_victor intent has the parameter following fields:

Field Type Units Description

username

This message_playback intent has the parameter following fields:

Field Type Units Description

given_name string The name of the person to send the message to

The set_timer intent has the parameter following fields:

Field Type Units Description

time_s int seconds The number of seconds to set the timer to

The take_a_photo intent has the parameter following fields:

Field Type Units Description

empty_or_selfie string Empty string if taking a photo, “photo_selfie” if

taking a selfie.

This test_name intent has the parameter following fields:

Field Type Units Description

name string

This test_timeWithUnits intent has the parameter following fields:

Field Type Units Description

time uint

units string

Table 455: meet_victor

parameters

Table 456:

message_playback

parameters

Table 457: set_timer

parameters

Table 458:

take_a_photo

parameters

Table 459: test_name

parameters

Table 460:

test_timeWithUnits

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 304

This weather_response intent has the parameter following fields:

Field Type Units Description

condition string The current weather conditions. One of “Clear”,

“Cloudy”, “Cold”, “Rain”, “Snow”, “Stars”,

“Sunny”, “Thunderstorms”, or “Windy”

isForecast string “false” or
“true”

“false” if it is the current weather conditions; “true”

if forecasted weather conditions.

localDateTime string The local time (where the weather conditions

apply) in UTC ISO 8601 format.

speakableLocationString string The location name that Vector could employ in his

verbal description of the temperature.

temperature string degrees The current or forecasted temperature, in the given

units.

temperatureUnit string F or C, for the units

77.2. INTENT MAPPING CONFIGURATION FILE

The configuration file holding the mapping of the clouds external intent names and parameters to

those used internally within Vector’s engine is located at:

/anki/data/assets/cozmo_resources/ config/engine/behaviorComponent/user_intent_map

.json

The path is hard coded into libcozmo_engine.so. The file has the following structure:

Field Type Description

simple_voice_responses array of
SimpleVoiceResponse

A table that maps the intent received from the cloud intent to

animation and emotion responses.

user_intent_map array of
UserIntentMap

A table that maps the intent received from the cloud or

application to the intent name used internally. This includes

renaming the parameters.

unmatched_intent string The intent to employ if cloud’s intent cannot be found in the

table above. Default: “unmatched_intent”

Each of the simple voice response mapping entries has the following structure:

Field Type Description

cloud_intent string The intent name returned by the cloud. See the “Cloud Intent”

column in Appendix J Table 640: Mapping of different intent

names for a list of intent names.

response X The animation and emotion changes that should occur in

response to the intent.

Table 461:

weather_response

parameters

Table 462: The

user_intent_map JSON

structure

Table 463: The simple

voice response JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 305

The response structure has the following fields:

Field Type Description

active_feature string The AI behavior feature that should be activated. See Appendex

H Table 637: The AI behaviour features for a list of AI features.

anim_group string The trigger name of the animation to play.

disable_wakeword_turn bool Default: false. Optional.

emotion_event string The name of the emotion event, describing how this intent affects

Vector's current mood. See Chapter 29 for a description.

Each of the user intent mapping entries has the following fields:

Field Type Description

app_intent string The intent name sent by the SDK application. See the “App

Intent” column in Appendix J Table 640: Mapping of different

intent names for a list of intent names. Optional.

app_substitutions dictionary A dictionary whose keys are the keys provided by the

application’s intent structure, and maps to the keys used internally.

Optional.

cloud_intent string The intent name returned by the cloud. See the “Cloud Intent”

column in Appendix J Table 640: Mapping of different intent

names for a list of intent names.

cloud_numerics array of strings Names of keys that used as parameter values by the behaviour..??

Optional.

cloud_substitutions dictionary A dictionary whose keys are the keys provided by the cloud’s

intent structure, and maps to the keys used internally. Optional.

feature_gate string The name of the feature that must be enabled before this intent can

be processed. Optional.

test_parsing bool Default: true. Optional.

user_intent string The name of the intent used internally within Vector’s engine.

78. REFERENCES AND RESOURCES

https://github.com/ARM-software/ML-KWS-for-MCU

A reference keyword listener for ARM microcontrollers.

https://github.com/MTG/essentia/tree/master/test/src/descriptortests/equalloudness

A reference implementation of an equal-loudness measure

Hydrogen Audio, ReplayGain 1.0 specification, 2018 Nov 19

http://wiki.hydrogenaud.io/index.php?title=ReplayGain_1.0_specification

A detailed description of how the sound loudness can be measured and used to adjust the

volume of music playback.

Note: the filter implementation for audio effects can be very complex; for sound detection it is

very simple.

ST Microelectronics, Reference manual, STM32F030x4/x6/x8/xC and STM32F070x6/xB advanced

ARM®-based 32-bit MCUs, 2017 Apr, Rev 4

https://www.st.com/resource/en/reference_manual/dm00091010-stm32f030x4-x6-x8-xc-and-

stm32f070x6-xb-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

Table 464: The

response JSON

structure

Table 465: The intent

mapping JSON structure

https://github.com/ARM-software/ML-KWS-for-MCU
https://github.com/MTG/essentia/tree/master/test/src/descriptortests/equalloudness
http://wiki.hydrogenaud.io/index.php?title=ReplayGain_1.0_specification
https://www.st.com/resource/en/reference_manual/dm00091010-stm32f030x4-x6-x8-xc-and-stm32f070x6-xb-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00091010-stm32f030x4-x6-x8-xc-and-stm32f070x6-xb-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 306

Wikipedia, A-weighting

https://en.wikipedia.org/wiki/A-weighting

Wikipedia, Robinson–Dadson curves

https://en.wikipedia.org/wiki/Robinson%E2%80%93Dadson_curves

https://en.wikipedia.org/wiki/A-weighting
https://en.wikipedia.org/wiki/Robinson%E2%80%93Dadson_curves

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 307

CHAPTER 19

Image Processing

Vector has a clever vision processing system:

 Camera operation including calibration

 Visual stimulation

 Recognizing symbols and specially marked objects

 Detecting faces, recognizing people, and estimating emotion

 Hand, pet and other object detection

 Taking photos

 Sending video stream to the SDK

 Vision is primarily used for navigation purposes: Recognizing the floor (or ground),

odometry and “simultaneous localization and mapping”

79. CAMERA OPERATION

Vector has a 1280x720 camera with a wide field of view to see around it without moving its head,

similar to how an animal can see a wide area around it by moving its eyes. The camera is

connected to the processor through a MIPI interface. The data from the camera passes to device

drivers, then to a separate daemon service and eventually passes to Vic-engine for the processing:

dev/socket/vic-engine-cam_client0

Python SDK

applications
Vic-Gateway

Vic-engine

Camera
MIPI

Recognition

Calibration /

correction

Object &

Face

Detection

Illumination

level

Mapping Photos

Motion

detection

Frame rate

Reducer

Convert to

Gray-Scale &

Shrink the

image

mm-anki-camera

Offboard

Vision Engine
Vic-Cloud

Figure 75: The

camera architecture

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 308

Vector visually recognizes the following elements in its environment:

 Special visual markers; Vector treats all marked objects as moveable… and all other

objects in its driving are as fixed & unmovable.

 Faces

 Hands

 Pets (feature not completed)

 Other objects, like fruit, etc. (feature not completed)

 LASER pointers (feature not completed)

79.1. CAMERA OPERATION

To reduce computing load the camera frame rate is reduced and the image size is scaled down.

This pattern is common throughout the image processing:

 More pixels require much more memory at each stage of image the image processing.

 It takes much, much longer (and more power) to process larger frames. There is the added

time to process each of the added pixels. Second, the neural-net models (used for human,

pet and object recognition) are much larger as well, taking much longer to process with the

many stages involved in these models.

 That extra processing is among the most power expensive items in Vector, and rapidly

depleting his battery, shortening the time between charges,

 The extra processing also generates heat in the head board, and

 Image processing tasks don’t need more pixels. There is rarely any improvement in visual

detection from using more pixels or higher frame rates

The software in reduces the frame rate by skipping frames (no fancy interpolation needed). Then

the image is converted to gray scale and scaled down to quarter size (640x360). (This was also the

case with Cozmo.)

79.2. CAMERA CALIBRATION

The camera is calibrated at manufacturing time. This is necessary so that the Vector can accurately

dock with a cube, getting the small lift fingers into the cube’s holes. The calibration primarily

compensates for the image being slightly offset, and unit to unit variation of focal length.

Vector’s camera has ~120° diagonal field of view.44 For comparison the iPhone’s camera has a 73˚

field of view, and the human eye is approximately 95˚. The cropped sensor image has a 90°

horizontal field of view and a 50° vertical field of view.

44 The press release for Vector reported a 120° field of view, but should be discounted as this number does not match the frame field of
view numbers given in the SDK documentation.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 309

Full Frame image

Cropped sensor image

Diagonal field of viewVertical

Field of view

Horizontal Field of view

Vector’s calibration uses focal length instead of field of view. The two values are related:

hfocalLengt

sizesensor
wfieldOfVie

2
arctan2

The following structure is reported in the robot logs for the camera calibration:

Field Type Description

cx
cy

float “The position of the optical center of projection within the image.

It will be close to the center of the image, but adjusted based on

the calibration of the lens at the factory.”

distortionCoeffs float[]

fx
fy

float The “focal length combined with pixel skew (as the pixels aren't

perfectly square), so there are subtly different values for x and

y.”

ncols int The width of the image in pixels. The value given is 640.

nrows int The height of the image in pixels. The value given is 360

skew float

Quotes are from Anki Cozmo SDK.

“A full 3x3 calibration matrix for doing 3D reasoning based on the camera images would look

like:”

100

0

0

yy

xx

centerhfocalLengt

centerhfocalLengt

79.3. CORRECTION

With each image frame to be processed, the software applies some processing to improve the

image contrast. This helps with the low-light that is common in rooms and at night. (The software

also monitors the illumination levels and tweaks the exposure settings so that image is as good as

possible before it gets to the software stage.)

Figure 76: The

camera field of view

Equation 1:

Relationship between

field of view and focal

length

Table 466: The camera

calibration JSON

structure

Equation 2: Camera

calibration matrix

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 310

One technique to improve the contrast is contrast-limited adaptive histogram equalization

(CLAHE). This looks at a histogram of the pixel gray-scale values in a wide window around each

pixel, and then maps the used gray-scale to a different set of gray values. This spreads the grays

out a bit further. Being adaptive, it helps with different lighting levels across the scene – some

areas being well lit, others in shadow – as well as vignetting (the darkening toward the edges and

corners) that may occur with the camera and lens.

79.4. VISION MODES

The vision process happen at different rates, many execute together in a shared group.

The vision processing system has many detectors, and functions. Some have their software run at

different rates. While most are independent of each other, they are often grouped together.

Vision Mode Executes with Description and notes

AutoExp This mode is used to control the auto-exposure

control level.

AutoExp_Cycling AutoExp This mode is used to detect

AutoExp_MinGain AutoExp

BrightColors This mode is used to detect colors that may be

interesting to explore.

Faces Used for face detection, and to trigger facial

identification.

Faces_Blink Faces This mode is used to detect and count eye

blinks.

Faces_Crop Faces This mode is used to detect faces that are

obscured or partly out of view.

Faces_Expression Faces This mode is used to estimate the facial

expression.

Faces_Gaze Faces Detects the gaze and looks deep into their eyes

with wonder and the hope of biscuits.

Faces_Smile Faces This mode is used to detect smiles.

Illumination This mode is used to estimate the level of

illumination in the scene.

Lasers This mode is used to detect laser pointer

activity.

Markers Detects Vector’s special square marker

symbols.

Markers_Off Markers

Markers_ChargerOnly Markers This part of the process of detecting Vector’s

special square marker symbols.

Markers_Composite Markers This part of the process of detecting Vector’s

special square marker symbols.

Markers_FastRotation Markers This part of the process of detecting Vector’s

special square marker symbols.

Markers_FullFrame Markers This part of the process of detecting Vector’s

special square marker symbols.

Markers_FullHeight Markers This part of the process of detecting Vector’s

Table 467: The Vision

processes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 311

special square marker symbols.

Markers_FullWidth Markers This part of the process of detecting Vector’s

special square marker symbols.

MirrorMode Displays the camera image on the LCD

Motion The mode is used to detect visual motion

OverheadEdges

OverheadMap disabled

People This mode is used to detect people, rather than

faces

Pets This mode is used to detect pets, such as cats

and dogs.

Hands Used to detect hands (for purposes of

pouncing on them).

SaveImages This mode is used to save the camera image as

a photograph.

Stats This is probably used to compute statistics

about the images or image processing

Viz This module creates a marked up image

showing where Vector see’s the charger,

cubes, faces, and other interesting things.

WhiteBalance This mode is used to estimate the

79.5. ILLUMINATION LEVEL SENSING

Vector estimations the amount of illumination in the room. Dark rooms would encourage him to

go to sleep, while bright or changing illumination would encourage him to be active. The

illumination is pretty easy to compute: sum up the brightness of each pixel in the image, or the

number of pixels above a threshold of brightness.

The camera is also used as an ambient light sensor when Vector is in low power mode (e.g.

napping, or sleeping). In low power mode, the camera is suspended and not acquiring images.

Although in a low power state, it is still powered. The software reads the camera’s auto

exposure/gain settings and uses these as an ambient light sensor. (This allows it to detect when

there is activity and Vector should wake.)

79.6. VISUAL MOTION DETECTION

Note: this is not the same as chapter 10, which sensed Vector’s motion.

Vector can detect visual movement in its field of view. This motion detector looks in two regions

of the camera view (the low left and the top right) for movement, and it looks at its projected view

of the ground for movement.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 312

V
e

rt
ic

a
l

S
iz

e

Horizontal

Size

Left Region

Horizontal

Size

Right

Region

The detector likely does pixel subtraction in these regions between frames, computing a score for

the number of pixels that changed and how wide of an area it was (the centroid). Then it adds this

with the past value (using the inverse of DecreaseFactor as a weight). If score is above a threshold

(MaxValue?) it concludes that there is motion in that region.

See Section 85.1.7 MotionDetector for a description of the motion detectors configuration.

The motion detector is used by the pouncing behaviors – see Chapter 30, section 125.2 Pouncing

The RobotObservedMotion event (see Chapter 15 section 58.2.2 RobotObservedMotion) is intended

to indicate when visual motion is detected. {Note: this event is not supported in current software}

80. THE CAMERA POSE: WHAT DIRECTION IS CAMERA POINTING IN?

The camera is located in Vector’s head. The pose of Vector’s camera – its position and

orientation, including its tilt up or down, can be estimated from Vector’s pose, the angle of his

head, the known position of the camera within the head and the position of the joint around which

the head swivels. Note: the values are for Cozmo, but are assumed to be representative of Vector:

Neck joint relative to robot origin
NECK_JOINT_POSITION = [-13, 0, 49]

camera relative to neck joint
HEAD_CAM_POSITION = [17.52, 0, -8]
DEFAULT_HEAD_CAM_POS = list(HEAD_CAM_POSITION)

DEFAULT_HEAD_CAM_ROTATION = [
 0, -0.0698, 0.9976,
 -1, 0, 0,
 0, -0.9976, -0.0698]

Compute pose from robot body to camera
Start with a pose defined by the DEFAULT_HEAD_CAM_ROTATION (rotation matrix)
and the initial position DEFAULT_HEAD_CAM_POS
default_head_pose = Matrix3d(DEFAULT_HEAD_CAM_ROTATION, DEFAULT_HEAD_CAM_POS)

Rotate that by the head angle
rotation_vector = RotationVectorAroundYAxis(-robot.head_angle.radians);
current_head_pose = default_head_pose.rotate_by(rotation_vector)

Get the neck pose (transform the initial offset by the robot's pose)
neck_pose = TransformPose(NECK_JOINT_POSITION, robot.pose)

Precompose with robot-to-neck-pose
camera_pose = current_head_pose.pre_compose_with(neck_pose);

45 https://forums.anki.com/t/camera-matrix-for-3d-positionning/13254/5

Figure 77: The

movement detection

regions

Example 6: Computing

the camera pose

source: Anki
45

https://forums.anki.com/t/camera-matrix-for-3d-positionning/13254/5

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 313

81. MARKERS

Anki considered QR codes to mark accessories and special items… but they were universally

rejected in the feedback received during development. So Anki created their own visual labeling

system, starting with Cozmo. Vector has a newer set of visual labels that is not compatible with

Cozmos. (There isn’t a clear reason for the incompatibility.) The algorithm used is among the

most documented of Anki’s internally developed modules for Vector.

Identify

marker

squares

Image 4 MEMs

Microphones

4 MEMs

Microphones

Decode

symbols

Symbol

· Identifier
· Object
· Orientation, scale
· Position

A key characteristic of the markers is a big, bold square line around it:

The square is used to estimate the distance and relative orientation (pose) of the marker and the

object is on. Vector, internally, knows the physical size of marker. The size of the square in the

view — and being told how big the shape really is —lets Vector know enough to compute the

likely physical distance to the marked item. And since the “true” mark has parallel lines, Vector

can infer the pose (relative angles) of the surface the mark is on.

The process of finding and decoding the marker symbols is very straightforward, since there is

quite a lot known about the structure of the marker image ahead of time. This allows the use of

computation friendly algorithms.

Image Grey scale
Erosion &

Dilation

Histogram

& threshold

Form vector

lines

Detect

quadrangles

Analyze each

square’s

symbol

Keep only

items in

squares

The steps in processing are:

1. Acquire a gray scale image,

2. Apply classic erosion-dilation and Sobel transforms to build a vector representation (no

pun intended) of the image; this is most familiar as “vector drawing” vs bitmap images

3. Detect the squares – the parallel and perpendicular lines – in the vector drawing. This will

be the potential area that a symbol is in.

4. Analyze square to determine is size, and affine transform – how it is tilted up-and-down,

and tilted away from the camera.

Figure 78: The

processing of the

image for symbols and

objects

Figure 79: A typical

rectangle around the

visual markers

Figure 80: Preparing

image for scanning for

symbols

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 314

5. Screen the squares, tossing out that those that are horribly distorted,

6. Analyze the pixels in the square to identify the code

81.1. THE INITIAL PREPARATION STEPS

The image is initially prepared for analysis by:

1. The image is converted to grey scale, since color is of no value.

2. Performs (erosion, dilation) that strip out noise, fill in minor pixel gaps. There are no small

features, so fine detail is not important.

3. The image is then converted to high-contrast black and white (there is no signal in grey

scale). This is done by performing a histogram of the grey scale colors, finding a median

value. This value is used as a threshold value: greys darker than this are consider black (a

1 bit), and all others are white (0 bit).

81.2. DETECT AND ANALYZE SQUARES

The detection of squares then:

1. Typically a pair of Sobel filters is applied to identify edges of the black areas, and the

gradients (the x-y derivative) of the edges.

2. The adjacent (or nearby) pixels with similar gradients are connected together into a list.

Straight line segments will have very consistent gradients along them. In other words, the

bitmap is converted into a vector drawing. In jargon, this is called the morphology.

3. The lists of lines are organized into a containment tree. A bounding box (min and max

positions of the points in the list) can be used to find which shapes are around others. The

outer most shape is the boundary.

4. “Corners of the boundaries are identified… by filtering the (x,y) coordinates of the

boundaries and looking for peaks in curvature. This yields a set of quadrilaterals (by

removing those shapes that do not have four corners).”

5. A perspective transformation is computed for the square (based on the corners), using

homography (“which is a mathematical specification of the perspective transformation”).

This tells how tilted the square is.

6. The list of squares is filtered, to keeping those that are big enough to analyze, and not

distorted with a high skew or other asymmetries.

Stein, 2017

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 315

81.3. DECODING THE SQUARES

The next step is to decode the symbol. Vector has a set of probe locations within the marker

square that it probes for black or white reading. These are usually centered in the cells of a grid.

Symbol

image area

Sample

regions for

each bit

Form binary

word

Compare

against known

symbols

patterns

Keep best fit

The steps in decoding the symbol are:

1. The software uses the perspective transform to map the first point location to one in the

image;

2. The pixels at that point in the image are sampled and used to assign a 0 or 1 bit for the

sample point.

3. The bit is stored, in a small binary word

4. The above steps are repeated for the rest of the probe locations

This process allows Vector to decode images warped by the camera, its lens, and the relative tilt of

the area.

Next, the bit patterns are compared against a table of known symbol patterns. The table includes

multiple possible bit patterns for any single symbol, to accommodate the marker being rotated.

There is always a good chance of a mistake in decoding a bit. To find the right symbol, Vector:

1. XOR’s the decoded bit pattern with each in its symbol table,

2. Counts the number of bits in the result that are set. (A perfect match will have no bits set,

a pattern that is off by one bit will have a single bit set in the result, and so on.)

3. Vector keeps the symbol with the fewest bits set in the XOR result.

81.4. REVAMPING SIZE AND ORIENTATION

The different rotations of the symbol would change the order that it sees the bits. Each bit pattern

in the table might also include a note on how much the symbol is rotated (i.e. 0, +90°, -90°, or

180°). When matching a bit pattern, Vector can know the major rotation of the symbol.

Combined with the angle of the symbol square, the full rotation of the symbol can be computed.

81.5. INFERRING KNOWLEDGE ABOUT OBJECTS

Vector associates an object with symbol. Some objects can have many symbols associated with

them. Cubes have different symbols used for sides of cubes. This allows Vector to know what

object it is looking at, and what side of the object. And, with some inference, the orientation of the

object.

Vector knows (or is told) the physical size of the symbol, and the object holding the symbol.

Combining this with the visual size of the object, time of flight distance measurement (if any), and

Vector’s known position, this allows Vector infer the objects place in the map.

Figure 81: Decoding

the symbol

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 316

82. FACE AND FACIAL FEATURES RECOGNITION

Vector “is capable of recognizing human faces, tracking their position and rotation

(“pose”) and assigning names to them via an enrollment process.” Vector’s facial detection and

recognition is based on the OKAO vision library. This lets Vector know when one (or more)

people are looking at it. This library is primarily used by Vector for facial recognition tasks:

 Face detection ability – the ability to sense that there is a face in the field of view, and

locate it within the image.

 Face recognition, the ability to identify whose face it is, looking up the identify for a set of

known faces

 Recognize parts of the face, such as eyes, nose and mouth, and where they are located

within the image.

Face

Detection

Blink

Gaze

Image Face

tracking

Identification

Face

· Location
· Identifier
· Name
· Facial features

location

There are a couple of areas that Vector includes access to in the SDK API, but did not incorporate

fully into Vector’s AI:

 The ability to recognize the facial expression: happiness, surprise, anger, sadness and

neutral. This is likely to be unreliable; that is the consensus of research on facial

expression software.

 Ability to estimate the direction of gaze

And there are several features in OKAO that are not used

 The ability to estimate the gender and age of the person

 Human upper body detection

 Hand detection and the ability to detect an open palm. The hand detection used in Vector

is done in a different way (which we will discuss in a section below.)

82.1. FACE DETECTION

OpenCV also has facial detection, but not recognition. OpenCV’s classic face detector is an

implementation of an algorithm developed by Viola-Jones. Since we know how that works, we

can discuss it as representative of how OKAO may work. Viola-Jones applies a series of fast

filters (called a “cascade” in the jargon) to detect low-level facial features (called Haar feature

selection) and then applies a series of classifiers (also called a cascade). This divides up interesting

areas of the image, identify facial parts, and makes conclusions about where a face is.

Vector’s face detector (and facial recognition) can’t tell that it is looking at an image of face –

such as a picture, or on a computer screen – rather than an actual face. One thing that Anki was

considering for future products was to move the time of flight sensor next to the camera. This

Anki Cozmo SDK

Figure 82: The face

detection and

recognition processes

Daniel Casner, 2019

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 317

would allow Vector to estimate the size of the face (and its depth variability) but measuring the

distance.

Side note: Anki was exploring ideas (akin to the idea of object permanence) to keep track of a

known person or object in the field of view even when it was too small to be recognized (or

detected).

82.2. FACE IDENTIFICATION AND TRAINING

When it sees a face, it forms a description of the facial features using twelve points:

 Each eye has three points,

 The nose has two,

 The mouth has four points

If you introduce yourself to Vector by voice, you are permitting the robot to associate the name

you provide with Facial Features Data for you. Facial Features Data is stored with the name you

provide, and the robot uses this data to enhance and personalize your experience and do things like

greet you by that name. This data is stored locally on the robot and in the robot’s app. It is not

uploaded to Anki nor shared, and you can delete it anytime.

82.3. COMMUNICATION INTERFACE

There are several commands to manage the faces that Vector recognizes, and to keep informed of

the faces that Vector sees. See Chapter 15 section 56 Faces for more details.

 The Enable Face Detection (see Chapter 15 section 56.4 Enable Face Detection) command

enables and disables face detection and analysis stages.

 The RobotChangedObservedFaceID and RobotObservedFace (see Chapter 15 section

56.2.4 RobotChangedObservedFaceID and 56.2.6 RobotObservedFace) events are used to

indicate when a face is detected, and tracking it: the identity of the face (if known), where

it is in the field of view, the facial expression, where key parts of the face are (in the view),

etc

 The Set Face to Enroll (see Chapter 15 section 56.10 Set Face to Enroll) command is used

to ability assign a name to face, and the Update Enrolled Face By ID (see Chapter 15

section 56.10 Set Face to Enroll) command is used to change the name of a known face

 The Request Enrolled Names (see Chapter 15 section 56.9 Request Enrolled Names)

command is used to retrieve a list the known faces

 The ability to remove a facial identity (see Chapter 15 section 56.7 Erase Enrolled Face By

Id), or all facial entities (see Chapter 15 section 56.6 Erase All Enrolled Faces)

 The Find Faces (see Chapter 15 section 56.8 Find Faces) command initiates the search for

faces

drawing by Jesse

Easley

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 318

83. TENSORFLOW LITE, DETECTING HANDS, PETS… AND THINGS?

Vector includes support to detect hands, and has preliminary support for detecting pets and a wide

variety of objects. These are done using TensorFlow Lite46 (aka TFLite), an inference only neural-

net discriminator.

Detection

objects
Image

Object

· Identifier
· Type (hand, pet, etc)
· Orientation, scale
· Position
· Region of image

Object

· Identifier
· Type (hand, pet, etc)
· Orientation, scale
· Position
· Region of image

Object

· Identifier
· Type (hand, pet, etc)
· Orientation, scale
· Position
· Region of image

Vector’s hand detection is done with a custom TensorFlow Lite DNN model.47 Vector also has a

custom person detector; this may be used to quickly identify whether there is a face in view before

engaging the potentially more expensive OKAO framework.

83.1. DETAILS ON TENSORFLOW LITE

From a distance, the TensorFlow Lite framework acts much the same as a classification trees,

taking inputs, examining properties and producing a result, such as “this is a hand.” Internally

the framework is a designed as a modular virtual machine for signal-processing-like computation.

A “model” is the program for this virtual machine, with information describing its memory

structures, inputs, outputs and the instructions. The analog of a software procedure in the model

are called a graph. The instructions are called operations. Full TensorFlow supports 800+

different operations out of the box, and custom ones can be added. TensoreFlow Lite supports

122+ different operations, and custom ones can be added as well. TensorFlow Lite supports one

graph in a model.

The host application has to do preprocessing such as feature extraction, prepare the input for the

system. For instance, the image must be converted to grey scale and scaled down to 128 pixels by

128 pixels. (More pixels require much more memory and processing steps often with no

improvement in detection; some higher quality models do use slightly larger image sizes.)

Then each of the operations in the model is carried out. An operation might perform a simple

calculation light summing values, keeping the smallest or largest, etc or an operation might be a

complex calculation such as a convolution. Once all of the operations have completed, the results

are not a “this is a hand” or other conventional software result. Instead, the results are big list of

values on how confident it is for each possible item. An application typically chooses the top item

or two as the output – if their confidence is high enough.

46 Since Tensorflow Lite was both introduced at the end of 2017, there has been a steady trickle of improvements to TensorFlow Lite.

There is a lower power version that targets microcontrollers.
47 There are four different hand detector models – only one is used – which suggests that the hand detector was actively being tweaked
and improved.

Figure 83: The

processing of the

image for symbols and

objects

Warden & Situnayake,

2019

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 319

TensorFlow Lite includes build time support to replace the key operation implementations with

fast, processor-specific ones:

Delegate(s)

ARM

Neural

Network

framework

Qualcomm

GPU

framework

FlatBuffers
Tensorflow

Lite

In addition, applications using TensorFlow Lite can provide their own, faster or more efficient

implementations of operations.

Each TensorFlow Lite model is probably run in its own thread. The benchmarks posted by

TensorFlow48 using smartphones to run model tens to hundreds of milliseconds. Putting each

model on its own thread and waiting for posted results allows the rest of the processing to execute

in a consistent fashion.

83.1.1 SalientPoint data structure

The SalientPoint JSON data structure is produced from the neural networks analysis of the image.

These points are used by the behavior system as something interesting to react to as well. The

structure has the following fields:

Field Type Units Description

area_fraction float Area of the region that was identified as a salient

point.

color_rgba uint RGBA How to color this region, for web visualization

description string

salientType string An enumerated type describing the kind of salient

point found.

score float A metric relating how interesting the point/region is

shape array of
points?

 An array of points outlining the interesting area?

timestamp uint ms The timestamp that this point was identified on

x_img float pixel Pixel coordinate of the upper left hand corner of the

region.

y_img float pixel Pixel coordinate of the upper left hand corner of the

region.

48 https://www.tensorflow.org/lite/performance/benchmarks

Figure 84:

TensorFlow lite with

hardware specific

accelerators

Table 468: SalientPoint

parameters

https://www.tensorflow.org/lite/performance/benchmarks

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 320

83.2. OTHER IDEAS THAT WEREN’T FULLY REALIZED AND FUTURE POTENTIAL

Vector also includes the stock MobileNet V1 (0.5, 128) model to classify images, although it does

not appear to have been used yet. This model was likely intended to give Vector the ability to

identify a wide variety of things, and pets.49

MobileNet V1 includes higher quality models than the one employed that may be explored. Since

this model was released, a version 2 and version 3 of MobileNet have been developed and released.

Version 2 is reported to be faster, higher quality, and/or require fewer processor resources.

(Version 3 is slower and takes more processor resources, but is much more accurate.)

The configuration file shows experimentation with MobileNet V2 (using 192x192 input images),

but it was disabled.

49 Or a special model for recognizing pets may have been under development

drawing by Jesse

Easley

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 321

84. PHOTOS/PICTURES

Vector has the ability to take pictures. The photographs were taken with less than the full camera

resolution. (It isn’t known if Anki intended to eventually take photographs at a higher resolution.)

These pictures are stored on Vector, not in the cloud. The mobile application and SDK

applications can view, delete or share pictures taken by Vector.

The camera/image processing pipeline in Vector is entirely focused on his AI features with as low

as practical battery impact. The images available for taking a picture are not filtered, or cleaned

up, so the pictures that Vector takes are noisy and smaller.

Commentary: The quality of photos seen on a mobile phone is achieved using a camera processing

pipeline to enhance the images, removing noise and applying special filters to reconstruct textures.

It is conceivable that the camera processing framework(s) from Qualcomm and Android could be

added to an open-source Vector. That would come at the cost of battery performance, heat, and

potentially overwhelm the memory resources (there are still bugs in Vector where the memory use

becomes too high, and the system thrashes, slowing noticeably down and eventually crashes.)

It is more practical, in a future open-source Vector, to export the raw camera images (in its RAW

format and at different illumination levels) and process the images on a PC or mobile device. The

availability of sophisticated image processing frameworks are much wider for those devices. See

Chapter 15, section 58 Image Processing for the camera access API.

84.1. COMMUNICATION INTERFACE

There are several commands to manage the photographs that Vector has taken. See Chapter 15

section 65 Photos for more details.

 The PhotoTaken event (see Chapter 15 section 65.2.1 PhotoTaken) is used to receive a

notification when Vector has taken a photograph.

 The Photos Info (see Chapter 15 section 65.5 Photos Info) command is used to retrieve a

list of the photographs that Vector currently has

 The Photo (see Chapter 15 section 65.4 Photo) command is used to retrieve a photo

 The Delete Photo command (see Chapter 15 section 65.3 Delete Photo) removes a photo

from the system

 The Thumbnail (see Chapter 15 section 65.6 Thumbnail) command retrieves a small

version of the image, suitable for displaying as a thumbnail

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 322

85. CONFIGURATION FILES

85.1. VISION CONFIG

The vision system’ main configuration file is located at:

/anki/data/assets/cozmo_resources/ config/engine/vision_config.json

This path is hardcoded into libcozmo_engine.so. It configures each of the image processing

module, and the schedule defaults. The file is a structure with the following fields:

Field Type Description

ColorImages boolean “whether color images are enabled on startup (can still be

toggled later)”

FaceAlbum string

FaceRecognition struct Configures when the face recognition runs

GroundPlaneClassifier struct Configuration of the ground plane classifier

IlluminationDetector struct Configuration of the illumination detector, and a link to the

configuration file for the classifier

ImageCompositing struct Configuration of the image compositing module

ImageQuality struct Controls the cameras auto-exposure settings.

InitialModeSchedule Struct “VisionModes that need to be scheduled by default go here.

Basically things that are always running.”

MotionDetector struct Configuration of the motion detection – the size of image

area to look for peripheral motion

NeuralNets NeuralNets struct Configures the use of the TensorFlow Lite detection

modules

NumOpenCvThreads int “Number of threads to use with OpenCV. 0 means no

threading according to docs. Only affects calls from

VisionSystem thread.”

OverheadMap struct The size of the overhead map

PerformanceLogging struct Configures how often to log information about the image

processing stats

PetTracker struct Configures the pet tracker – the number of pets, face size,

thresholds, etc.

85.1.1 FaceRecognition

The FaceRecognition structure includes the following fields:

Field Type Description

RunMode string Can be either “asyncrhonous” or “synchronous”

Table 469: The vision

configuration JSON

structure

Table 470: The

FaceRecognition

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 323

85.1.2 GroundPlaneClassifier

The GroundPlaneClassifier (also called “desk classifier”) is used to visually identify where the

driving surface is. The structure includes the following fields:

Field Type Description

FileOrDirName string Path to the ground plane classifier file.

MaxDepth uint

MinSampleCount uint

OnTheFlyTrain booleab

PositiveWeight float

TruncatePrunedTree boolean

Use1SERule boolean

Note: The Ground Plane classifier is a bit unusual. It is one of only two YAML files. The YAML

file is an openCV based classifier tree, instead of TensorFlow Lite. This suggests it may have been

older (i.e. from Cozmo), and/or it may have been more efficient to implement in openCV.

85.1.3 IlluminationDetector

The IlluminationDetector structure includes the following fields:

Field Type Description

AllowMovement boolean If true, “continue to run even if robot is moving”

ClassifierConfigPath string Path to the illumination classifier configuration file

DarkenedMaxProbability float The “max probability to result in 'Darkened' class”

FeaturePercentileSubsample uint “Stride for building histogram to compute percentiles”

IlluminatedMinProbability float The “min probability to result in 'Illuminated' class”

85.1.4 InitialModeSchedules

The InitialModeSchedules provides the default frequency that each vision processing step is run.

(And step not listed here, the default is that it is not scheduled to run). The structure includes the

following fields:

Field Type Description

AutoExp uint Run the auto exposure step every n frames.

Markers uint Run the markers step every n frames.

WhiteBlance uint Run the white balance step every n frames

Table 471: The

GroundPlaneClassifier

structure

Table 472: The

IlluminationDetector

structure

Table 473: The

InitialModeSchedules

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 324

85.1.5 ImageCompositing

The ImageCompositing The structure includes the following fields:

Field Type Description

imageReadyPeriod uint

numImageReadyCyclesBefo

reReset

uint

percentileForMaxIntensity uint

85.1.6 ImageQuality

The ImageQuality structure includes the following fields:

Field Type Description

CyclingTargetValues float[] “When ‘cycling’ exposure is enabled, the target values to

use.” Each value must be in the range 0 to 255

HighPercentile float Range 0.0 to 1.0

InitialExposureTime_ms uint “Sent each time we request camera calibration”

LowPercentile float Range 0.0 to 1.0

MaxChangeFraction float “Relative amount we can change current exposure/wb each

update, zero disables.” Range: 0.0 to inf

MeterFromDetections boolean “Base auto-exposure on detected markers, faces, etc, if any”

RepeatedErrorMessageInter

val_ms

uint The “time between error messages once triggered”

SubSample uint

TargetPercentile float Range 0.0 to 1.0

TargetValue uint “Try to make targetPercentile have this value.” Range 0 to

254

TimeBeforeErrorMessage_m

s

uint “How long [the] Vision System must detect `bad’ quality

before notifying game”

TooBrightValue uint “‘Too Bright’ if LowPercentile is above this”

TooDarkValue uint “‘Too Dark’ if HighPercentile is below this”

85.1.7 MotionDetector

The MotionDetector structure includes the following fields:

Field Type Description

CentroidStability float “How quickly should peripheral motion detection track the

source of motion.”

DecreaseFactor float “The higher this number, the more quickly motion detection

forgets about motion.”

HorizontalSize float “Fraction of the width of the image to be used for peripheral

motion detection (right and left).”

Table 474: The

ImageCompositing

structure

Table 475: The

ImageQuality structure

Table 476: The

MotionDetector structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 325

IncreaseFactor float “The higher this number, the more sensitive is motion

detection to motion.”

MaxValue float “The higher this value, the sooner peripheral motion

detection will be triggered.”

VerticalSize float “Fraction of the height of the image to be used for

peripheral motion detection (top)”

85.1.8 NeuralNets

The NeuralNets structure includes the following fields:

Field Type Description

Models Model[] An array of TensorFlow Lite model configuration structures

(see below).

ProfilingEventLogFrequency

_ms

uint How often to log information about the model execution

timing.

ProfilingPrintFrequency_ms uint How often to print (to TBD) information about the model

execution timing.

Table 477: The

NeuralNets structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 326

The Models is an array of structures. Each structure has the following fields:

Field Type Description

architecture string

benchmarkRuns uint If non-zero, gather duration and resource usage information

for each run.

graphFile string The name of the TensorFlow Lite file (.tflite) to load to

implement this model

inputHeight uint The height, in pixels, of the input image. Typically 128

inputLayerName string The name of the input layer in the TensorFlow Lite file.

inputWidth uint The width, in pixels, of the input image. Typically 128

inputScale float When the input data type is “float”, the data is first scaled

by this number, then the shift value is added:

float_input = data / inputScale + inputShift

inputShift int

labelsFile string The name of the text file (.txt) that gives text strings for the

classification output of the model.

memoryMapGraph uint ?If non-zero, memory-map the TensorFlow Lite file in,

rather than loading it with file reads.

minScore float If the highest “score” for a label is below this value, none of

the items was recognized in the image.

modelType string “TFLite” for TensorFlow Lite files.

networkName string The name of the vision processing step.

numGridCols uint Optional.

numGridRows uint Optional.

outputLayerNames string The name of the output layer in the TensorFlow Lite file.

outputType string “classification” vs “binary_localization”

pollPeriod_ms uint

timeoutDuration_sec float ?The time to allow the model to run in a background thread

without any results before it is considered timed out, and

must be restarted?

useFloatInput uint If non-zero, use float data type within the model

useGrayscale uint

verbose uint If non-zero, provide verbose output during the interpretation

of the model.

TENSORFLOW MODEL FILES

The TensorFlow Lite models are stored in:

/anki/data/assets/cozmo_resources/config/engine/ dnn_models

The last part of the path is hardcoded into libcozmo_engine.so.

Table 478: The

TensorFlow Lite model

configuration structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 327

85.1.9 OverheadMap

The OverheadMap is a floor map being constructed by Vector. This structure is used to configure

the size. “Bigger sizes do not impact computation, only memory.” This structure includes the

following fields:

Field Type Description

NumCols uint The number of columns in the map.

NumRows uint The number of rows in the map.

85.1.10 PerformanceLogging

The PerformanceLogging provides the frequency to log stats about the vision processing. The

structure includes the following fields:

Field Type Description

DropStatsWindowLength_se
c

uint “How long to average dropped image stats”

TimeBetweenProfilerDasLog
s_sec

uint “How often to print Profiler info messages to the logs”

TimeBetweenProfilerInfoPri
nts_sec

uint “How often to log Profiler DAS events”

85.1.11 PetTracker

The PetTracker structure includes the following fields:

Field Type Description

DetectionThreshold uint Range is 0 to 1000

InitialSearchCycle uint Range is 1 to 45

NewSearchCycle uint Range is 5 to 45

MaxFaceSize uint

MaxPets uint The maximum number animals that are detectable &

trackable at the same time.

MinFaceSize uint

TrackSteadiness uint “10 to 30 in Percentage change required to actually update

size/position”

Comment: The ability to search for a lost pet would have been really cool.

Table 479: The

OverheadMap structure

Table 480: The

PerformanceLogging

structure

Table 481: The

PetTracker structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 328

85.2. SCHEDULE MEDIATOR CONFIGURATION FILES

The scheduling for the different vision system modules – how often each processing step is run – is

configuration in file located at:

/anki/data/assets/cozmo_resources/ config/engine/visionScheduleMediator_config.json

This path is also hardcoded into libcozmo_engine.so.

This is an array of structures. Each structure gives the frequency to run a given image processing

step, for each of the vision processing subsystems modes. 1 means “runs every frame,” 4 every

fourth frame, and so on. The structure has the following fields:

Field Type Description

high uint When in high “mode” run the image processing step every n

frames. This value must be a power of two.

low uint When in low “mode” run the image processing step every n

frames. This value must be a power of two.

med uint When in medium “mode” run the image processing step

every n frames. This value must be a power of two.

mode string The name of the image processing step

relativeCost uint A “heuristic weighting to drive separation of heavy-weight

tasks between frames where 1 should indicate our lowest

cost process e.g. “Markers” is ~16x as resource intensive as

“CheckingQuality”

standard uint When in medium “mode” run the image processing step

every n frames. This value must be a power of two.

85.3. PHOTOGRAPHY CONFIGURATION FILES

The photography subsystem configuration in file located at:

/anki/data/assets/cozmo_resources/ config/engine/photography_config.json

This path is also hardcoded into libcozmo_engine.so.

This is structure has the following fields:

Field Type Description

MaxSlots uint

MedianFilterSize uint “If > 0, enables a median filter before saving. Must be odd.

3 or 5 are reasonable values.”

SharpeningAmount float 0.0 disables sharpening

RemoveDistortion boolean

SaveQuality uint

ThumbnailScale float

Table 482: The vision

schedule configuration

JSON structure

Table 483: The

photography

configuration JSON file

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 329

86. RESOURCES & RESOURCES

ARM, Neural-network Machine learning software repo

https://github.com/ARM-software/armnn

Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. Emotional expressions

reconsidered: Challenges to inferring emotion from human facial movements. Psychological

Science in the Public Interest, 20, 1–68. (2019). doi:10.1177/1529100619832930

https://journals.sagepub.com/stoken/default+domain/10.1177%2F1529100619832930-

FREE/pdf

This paper describes the limitations and high error rate of facial expression software.

FloydHub, Teaching My Robot With TensorFlow, 2018 Jan 24,

https://blog.floydhub.com/teaching-my-robot-with-tensorflow/

Google, MobileNets: Open-Source Models for Efficient On-Device Vision, 2017, Jun 14,

https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html

Hollemans, Matthijs. Google’s MobileNets on the iPhone, 2017 Jun 14

https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/

MobileNet version 2, 2018 Apr 22

https://machinethink.net/blog/mobilenet-v2/

These two blog posts give an excellent overview of the mechanics of the MobileNet

architecture.

Omron, Human Vision Component (HVC-P2) B5T-007001 Evaluation Software Manual, 2016

http://www.farnell.com/datasheets/2553338.pdf

Omron, OKAO Vision Software Library

https://www.components.omron.com/sensors/image-sensing/solution/software-library

Qualcomm, How can Snapdragon 845’s new AI boost your smartphone’s IQ?, 2018 Feb 1

https://www.qualcomm.com/news/onq/2018/02/01/how-can-snapdragon-845s-new-ai-boost-

your-smartphones-iq

Qualcomm, Snapdragon Neural Processing Engine SDK Reference Guide,

https://developer.qualcomm.com/docs/snpe/overview.html

Qualcomm Neural Processing software development kit (SDK) for advanced on-device AI,

the Qualcomm Computer Vision Suite

Situnayake, Daniel; Pete Warden, TinyML, O’Reilly Media, Inc. 2019 Dec,

https://www.oreilly.com/library/view/tinyml/9781492052036/

Stein, Andrew; Decoding Machine-Readable Optical codes with Aesthetic Component, Anki,

Patent US 9,607,199 B2, 2017 Mar. 28

TensorFlow, Mobile Net v1

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

“small, low-latency, low-power models” that can recognize a variety of objects (including

animals) in images, while running on a microcontroller

TensorFlow, TensorFlow Lite GPU delegate

https://www.tensorflow.org/lite/performance/gpu

TensorFlow, TensorFlow Lite inference

https://www.tensorflow.org/lite/guide/inference

This Week in Machine Learning (TWIMLAI), episode 102, Computer Vision for Cozmo, the

Cutest Toy Robot Everrrrr! with Andrew Stein

https://twimlai.com/twiml-talk-102-computer-vision-cozmo-cutest-toy-robot-everrrrr-andrew-

stein/

https://github.com/ARM-software/armnn
https://journals.sagepub.com/stoken/default+domain/10.1177%2F1529100619832930-FREE/pdf
https://journals.sagepub.com/stoken/default+domain/10.1177%2F1529100619832930-FREE/pdf
https://blog.floydhub.com/teaching-my-robot-with-tensorflow/
https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
https://machinethink.net/blog/mobilenet-v2/
http://www.farnell.com/datasheets/2553338.pdf
https://www.components.omron.com/sensors/image-sensing/solution/software-library
https://www.qualcomm.com/news/onq/2018/02/01/how-can-snapdragon-845s-new-ai-boost-your-smartphones-iq
https://www.qualcomm.com/news/onq/2018/02/01/how-can-snapdragon-845s-new-ai-boost-your-smartphones-iq
https://developer.qualcomm.com/docs/snpe/overview.html
https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://www.tensorflow.org/lite/performance/gpu
https://www.tensorflow.org/lite/guide/inference
https://twimlai.com/twiml-talk-102-computer-vision-cozmo-cutest-toy-robot-everrrrr-andrew-stein/
https://twimlai.com/twiml-talk-102-computer-vision-cozmo-cutest-toy-robot-everrrrr-andrew-stein/

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 330

Viola, Paul; Michael Jones, Rapid Object Detection using a Boosted Cascade of Simple Features,

Accepted Conference on Computer Vision and Patter Recognition, 2001

http://wearables.cc.gatech.edu/paper_of_week/viola01rapid.pdf

Wikipedia, Adaptive histogram equalization

https://en.wikipedia.org/wiki/Adaptive_histogram_equalization

Wikipedia, Viola-Jones object detection framework

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework

Viola, Paul; Michael Jones, Robust Real-time Object Detection, International Journal of Computer

Vision (2001)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.4868

Example code for running a TensorFlow Lite model on a PC

https://github.com/ctuning/ck-tensorflow/blob/master/program/object-detection-

tflite/detect.cpp

http://wearables.cc.gatech.edu/paper_of_week/viola01rapid.pdf
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.4868
https://github.com/ctuning/ck-tensorflow/blob/master/program/object-detection-tflite/detect.cpp
https://github.com/ctuning/ck-tensorflow/blob/master/program/object-detection-tflite/detect.cpp

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 331

CHAPTER 20

Mapping & Navigation

Vector builds an internal map to track where he can drive, where objects and faces are.

 Mapping Overview

 Navigation and Path Planning

87. MAPPING OVERVIEW

Vector tracks objects in two domains:

Objects track in

camera image

coordinates

2D surface map

 A 2D map that is used to track where objects (especially objects whose marker symbols he

recognizes), cliffs, and other things are on the surfaces that he can drive on. Vector uses

this map to navigate. This map has an arbitrary origin and orientation.

 Vector also tracks where faces, pets and some kinds of recognized objects are in his

camera image area; these objects are tracked in the image pixels. (Never mind that the

camera pose can change!)

Vector’s 2-D surface map system works with the localization and navigation subsystem. It uses

several sensors to know

 Cliff sensors to detect edge, and lines

 Time of flight sensor to measure distances

 Vision to detect the edges, and the location of a hand

 Vision to identify accessories by recognizing markers

88. MAP REPRESENTATION

Vector keeps tracks of the surface that he can drive on with a navigable 2D map. The map’s

orientation and position of its origin are arbitrary – Vector just picks a spot and goes with it. The

surface map is represented in a compressed format called a quad-tree.

Figure 85: Mapping

contexts

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 332

Vector tracks accessory objects, immovable obstacles, and cliffs in terms of this map. The map’s

units are in mm.

88.1. QUAD-TREE MAP REPRESENTATION BASICS

A quad-tree is a structured way of “compressing” the information in the map, to reduce the

amount of memory required. A quad-tree that recursively breaks down a grid into areas that are

interesting, and those that are note.

Leaf node (quad),

level 2

Root node

Leaf node (quad),

level 1

Inner node

The tree has two kinds of nodes: inner nodes and leaf nodes:

 The inner nodes do not hold any information about the region (except its size). Instead

they point to 4 child nodes at the next lower layer. The top most node is called the root

node.

 The leaf nodes of the tree are square cells (called quads) that hold information about what

is there (or that the area is unexplored).

Each node represents a square area. The size of the square depends on how many levels it is from

the root node. The root node covers the whole map. The nodes in the next layer down are half the

width and height of the root node. (In general, a node is half the width and height of a node the

next layer up.) Nodes (including quads) at the same level – the same distance from the root node –

are the same size. Each node’s coordinates can be figured in a similar way by knowing the

coordinates of the root node.

When Vector reaches the edge of his map area and needs to expand it, he has to add a new node at

the top (this becomes the new root node) and adds nodes down until it can contain the info at the

edge of the map.

88.2. THE MAP’S STARTING POINT

Vector doesn’t have a “north pole” or other global reference point to center his map on. When he

powers on, or “whenever Vector is delocalized (i.e. whenever Vector no longer knows where he

is – e.g. when he's picked up), Vector creates a new pose starting at (0,0,0) with no rotation. As

Vector drives around, his pose (and the pose of other objects he observes – e.g. faces, his [cube],

charger, etc.) is relative to this initial position and orientation.”

Client applications (the ones that talk via the HTTPS API) may also wish to know that the map was

thrown out and a new one created – and thus know they should toss out their map and location of

objects. Vector associates a unique identifier with each generation of the map called origin_id.

Whenever a new map is created the “origin_id [is] incremented to show that [the] poses [of the

quad-tree

Figure 86: Structure

of a quad-tree

Anki SDK

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 333

map, Vector, and objects in the world] cannot be compared with earlier ones.” “Only poses of the

same origin_id can safely be compared or operated on.”

88.3. HOW THE MAP IS SENT FROM VECTOR TO SDK APPLICATIONS

The full quad-tree is not sent from Vector to an SDK, only the leaf nodes (quads). Quads are the

only part of the tree that hold information about what is in an area. They also have sufficient

information to reconstruct a quad-tree, which is a useful access structure.

89. MEASURING THE DISTANCE TO OBJECTS

Vector has a time of flight sensor, pointing straight ahead. (See Chapter 2 for a description of the

physical location.) He can use the sensor to measure the distance to the objects, barriers, open

spots on the map, and to estimate his position. The sensor can be blocked by the arms, if they are

in just the right lowered position – such as approaching an object and docking with it.

Range to Object

· Distance (mm)

· Angle (radians)

Filter

Locate markers,

estimate

· Distance (mm)

· Angle (radians)

Time of

Flight

sensor

Camera

image

Select

best

If the sensor is not blocked:

 The samples of distances reported by the sensor are gathered,

 A filter is applied to them (probably a median filter), throwing out values that are too near

or too far.

 Combining this with Vectors current position and orientation, and the distance to the

object, he can estimate the objects position; and

 Vector can infer that the space between him and the object are free of other objects and

obstacles. (This means splitting up the map quads into a fine-grained resolution along the

narrow beam path.)

In addition to this, if the object has a known marker, the vision system estimates the angle of the

object, and a distance to it. This is based on the known visual size of the marker, and the observed

size. If the time of flight sensor is not blocked, only the angle need be used. If the sensor is

blocked, the visually estimated distance to the object can be used instead.

89.1. FILTERING

The time of flight sensor emits a stream of pulses that are detected by a grid of single photon

avalanche diode (SPAD) detectors. The detectors measure two things:

1. The duration from the time that the pulse was emitted; this is a direct measure of the

distance to the object.

2. A count of the number of photons received back from the object. This is a measure of how

reflective the object is. This can potentially be used to distinguish between two different

objects.

sending the quad-tree

Figure 87: A typical

localization and

mapping functional

block diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 334

The sensor gathers the distances into a histogram counting the number of times each distance was

measured. At regular intervals the body-board firmware gets the data from the sensor, resetting the

counts and the histogram. The data is then sent to the head-board.

The software has to clean up the histogram since it is very noisy, with lots of spikes:

Comment: The histogram is actually part of how the sensor cleverly rejects noise. The detectors

will pick up light from other sources, such as bright sunlight. By using pulses and controlling

when they are sent, the sensor can measure the background (or ambient) light level, and better

discriminate its own light pulses from the rest. The noise can come from the light be reflected

back by dirt on the sensor lens, dust in the atmosphere, light bouncing around and coming back a

little later than the directly reflected light. Gathering the measurements into a histogram spreads

the noise out, mostly randomly, making it easier to pick out the useful measurement.

The easiest way to eliminate the histogram spikes is to do a pass over, setting each points value to

be the weighted average of the values to the left and right. Values below a noise floor can be

tossed out.

Then a good distance measurement can be found by looking for the peak or by finding the median.

89.1.1 VL53L1X next generation sensor

Vector is built with a VL53L0X sensor. But Vector’s software is structured to support processing

data from its much more powerful sibling VL53L1X sensor. Anki was investigating this sensor for

use in future Cozmo generations, and performing engineering evaluations using a modified Vector.

The VL53L1X’s detector is a 16x16 grid of SPAD detectors. The sensor can be configured to use

rectangular areas of the detector grid, called the region of interest (ROI), instead of the whole grid:

With the sensors field of view, different regions look in different directions. By creatively

choosing regions to get measurements from – and using the reflectivity measurement to distinguish

between objects – the software could look around, track multiple objects and scan the driving

surface. In other words, it could work like a low-resolution depth sensing camera, with a very

good measurement of depth and surface reflectivity. It can even detect swiping motions.

Since Anki had placed the time of flight sensor in the robot’s head, near the camera, there was

more potential for smarter interaction. Obviously, the head could scan up and down, giving a

Figure 88: A typical

histogram from a time

of flight sensor.

ST Microelectronics

Figure 89: Sensing

regions of interest

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 335

much wider range of looking for cliffs, distance to objects higher than a few centimeters and such.

The recognition would have had another signal to help it improve hand, face, and pet detection.

The face recognition software would have better ability to tell if it was looking at an image or a

real face – by knowing the distance, it could tell if the face was a plausible size.

89.2. INTERNAL DATA STRUCTURES

The ranging modules produce several JSON structures for internal use. The first main output

structure, DistanceSensorData, has the following fields:

Field Type Units Description

proxDistanceToTarget_mm float mm The distance to object, as measured by the time of

flight sensor.

visualAngleAwayFromTarget_rad float radians The targets relative orientation angle, as estimated

by the vision system.

visualDistanceToTarget_mm float mm The distance to object, as estimated by the vision

system.

89.2.1 Raw Range Data

The second main output data structure, RangeSensorData, is very similar, but links to source data.

It has the following fields:

Field Type Units Description

headAngle_rad float radians The angle (tilt) of the robots head.

rangeData RangeDataRaw The data from the time of flight sensor.

visualAngleAwayFromTarget_rad float radians The targets relative orientation angle, as estimated

by the vision system.

visualDistanceToTarget_mm float mm The distance to object, as estimated by the vision

system.

The sensor-related data structures involve a complex nesting of structures. To help clarify:

Range Data

Raw

Range

Sensor

Data

Ranging

Data
Range

reading

Range

reading

Range

reading

The RangeDataRaw structure is just a link to an array of arrays of measurements. It has the

following fields:

Field Type Units Description

data RangingData[] An array of the sensor data to process, and the

results.

Table 484:

DistanceSensorData

parameters

Table 485:

RangeSensorData

parameters

Figure 90: The time of

flight data structures.

Table 486:

RangeDataRaw

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 336

The RangingData structure has the following fields:

Field Type Units Description

numObjects uint count A count of the number of objects seen in the

regions.

processedRange_mm int mm The range to the object after processing & filtering

of the data

readings RangeReading[] The range readings reported from the time of flight

sensor

roi uint The region of interest that was measured.

roiStatus uint A code indicating whether there is a valid

measurement for this region.

spadCount float “the time difference (shift) between the reference

and return [detector] arrays.” This translates to

distance to the target.

The RangeReading structure is basically identical to the structure in ST’s software to interface with

the time of flight sensor. It has the following fields:

Field Type Units Description

ambientRate_mcps float mcps The ambient number of counts; this is the noise

floor

rawRange_mm int mm

sigma_mm float mm The distance to the target

signalRate_mcps float mcps The “return signal rate measurement… represents

the amplitude of the signal reflected from the target

and detected by the device.”

status uint A code with 0 indicating a valid measurement,

otherwise indicating an error during measurement

or processing.

Note: mcps is mega counts per second.

89.2.2 Display-Ready Range Data

The RangeDataDisplay structure is just a link to an array of arrays of measurements. It has the

following fields:

Field Type Units Description

data RangingDataDisplay[] The ranging data, for potential display.

Table 487: RangingData

parameters

Table 488:

RangeReading

parameters

Table 489:

RangeDataDisplay

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 337

The RangingDataDisplay structure is basically identical to the structure in ST’s software to interface

with the time of flight sensor. It has the following fields:

Field Type Units Description

padding uint Likely a CLAD structure field that is reserved for

future use that was automatically converted to

JSON.

processedRange_mm float mm The range to the object after processing & filtering

of the data

roi uint The region of interest that was measured.

roiStatus uint A code indicating whether there is a valid

measurement for this region.

spadCount float count “the time difference (shift) between the reference

and return [detector] arrays.” This translates to

distance to the target.

signalRate_mcps float mcps The “return signal rate measurement… represents

the amplitude of the signal reflected from the target

and detected by the device.”

status uint A code with 0 indicating a valid measurement,

otherwise indicating an error during measurement

or processing.

90. BUILDING THE MAP

The map is made as Vector drives around – when he is on a mission, or just exploring. Each of the

leaf quads (in the map) is associated with information about that space and what is contained there:

 What Vector knows is in the quad –a cliff, the edge of a line, an object with a marker

symbol on it, or an object without a symbol (aka an obstacle),

 A list of what Vector doesn’t know about quad – i.e. that he doesn’t know whether or not

there is a cliff or interesting line edge there,

 Whether Vector has visited the quad or not.

Vector subdivides quads to better represent the space. The quad probably is only slight bigger than

the object in it. But the quad (probably) can be smaller than the object, to accommodate the object

not oriented and aligned to fit quite perfectly in the quad. More than quad can refer to a contained

object.

90.1. MAPPING CLIFFS AND EDGES

If a cliff (surface proximity) sensor has a large, significant change in value, Vector will make a

note that there is a cliff sensor there. If the value has a smaller, but still noticeable change, he

might make a note that there is a line edge there – an edge between a dark area and a light area.

Table 490:

RangingDataDisplay

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 338

90.2. TRACKING OBJECTS

Vector tracks objects (especially objects with markers) using the map, and other cross-referencing

structures. Vector associates the following information with each object it tracks:

 The object’s kind (dock, cube, etc)

 A pose. The image skew of the marker symbol gives some partial attitude (relative

orientation) information about the object and Vector can compute an estimated orientation

(relative to the coordinate system) of the object from this and Vector’s own pose. Vector

can estimate the objects position from his own position, orientation, and the distance

measured by the time of flight sensor.

 A size of the object. Vector is told the size of objects with the given symbol.

 A link to a control structure for the kind of object. For instance, accessory cubes can be

blinked and sensed.

If he sees a symbol, he uses the objects known size, the image scale, its pose (if known) and any

time-of-flight information to (a) refine his estimated location on the map, (b) update the location

and orientation of that object.

90.3. BUILDING A MAP WITH SLAM

Vector employs a mapping technique known as simultaneous location and mapping (SLAM) to

integrate these (and other) steps. SLAM is a method to identify Vector’s current position and

orientation (relative to the map), and to construct that map.

Build Map

Enhanced

Kalman Filter

Filter

Apply current

position,

orientation

Odometry

Feature

extraction

Position & angle

Time of

Flight

sensor

Camera

image

IMU

Identify markers

· Distance (mm)

· Angle (radians)

Select

best

SLAM consists of multiple parts. It integrates the sensor for distance and movement. It also uses

image processing to figure it out where it is at. It identifies landmarks, and information about

them. In a sophisticated integration process, it can estimate Vector’s orientation and if an object

has moved. The estimate of Vectors orientation is based on turn information from the IMU, and

refined by what it can see.

Figure 91: A typical

localization and

mapping functional

block diagram

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 339

91. NAVIGATION AND PLANNING

Path planning is devising a path around obstacles without collision, to accomplish some goal, such

as docking with the “home” (charger) or accessory cube. Intuitively, all you need to with a

rectilinear grid is to figuring out the x-y points to go from point A to B. Vector (and Cozmo) is

longer than they are wide – especially when carrying a cube. If this isn’t taken into account by the

planner, Vector could get stuck going down some path he can’t fit in or turn around in. Cozmo had

an XY-theta planner to construct paths that he could traverse.

Vector’s path planning approach is unknown.

92. RESOURCES & RESOURCES

Riisgaard, Søren; Morten Rufus Blas; SLAM for Dummies: A Tutorial Approach to Simultaneous

Localization and Mapping

http://www-inst.eecs.berkeley.edu/~ee290t/fa18/readings/Slam-for-dummies-mit-tutorial.pdf

ST Microelectronics, UM2039 World smallest Time-of-Flight ranging and gesture detection sensor

Application Programming Interface, Rev, 2016 Jun

https://www.st.com/resource/en/user_manual/dm00279088-world-smallest-timeofflight-

ranging-and-gesture-detection-sensor-application-programming-interface-

stmicroelectronics.pdf

ST Microelectronics, UM2600 Counting people with the VL53L1X long-distance ranging Time-of-

Flight sensor, Rev 1, 2019 Jun

https://www.st.com/resource/en/user_manual/dm00626942-counting-people-with-the-

vl53l1x-longdistance-ranging-timeofflight-sensor-stmicroelectronics.pdf

Wikipedia, Occupancy grid mapping,

https://en.wikipedia.org/wiki/Occupancy_grid_mapping

Vector’s map is based on occupancy grids, except it does not use probabilities.

http://www-inst.eecs.berkeley.edu/~ee290t/fa18/readings/Slam-for-dummies-mit-tutorial.pdf
https://www.st.com/resource/en/user_manual/dm00279088-world-smallest-timeofflight-ranging-and-gesture-detection-sensor-application-programming-interface-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00279088-world-smallest-timeofflight-ranging-and-gesture-detection-sensor-application-programming-interface-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00279088-world-smallest-timeofflight-ranging-and-gesture-detection-sensor-application-programming-interface-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00626942-counting-people-with-the-vl53l1x-longdistance-ranging-timeofflight-sensor-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00626942-counting-people-with-the-vl53l1x-longdistance-ranging-timeofflight-sensor-stmicroelectronics.pdf
https://en.wikipedia.org/wiki/Occupancy_grid_mapping

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 340

CHAPTER 21

Accessories

Vector’s accessories include his charging station, companion cube, and custom items that can be

defined thru the SDK.

 Accessories in general: symbols, docking

 Home & Charging Station

 Companion cube, which is “smart,” sensing movement, orientation, taps being held and is

able to provide feedback via lights

 Custom items

93. ACCESSORIES IN GENERAL

Accessories have at least one maker symbol that Vector can recognize. Vector tracks the location

and orientation based on this.

93.1. DOCKING

Docking is a behaviour/action that is used for both approaching the cube, charging station (home),

and other marked items.

It has specialized steps depending on whether it is a cube, the home, etc.

94. HOME & CHARGING STATION

Vector has a rich set of behaviours associated with its Home / Charger. In retrospect, this makes

sense, as it is Vectors home, his nest, his comfy chair.

94.1. DOCKING

Vector’s step in docking with the charging station are:

1. Approach and line up with the charger

2. Turn around (rotate 180°)

3. Reverse and back up the ramp. Vector uses a line follower, with his cliff sensors, to drive

straight backwards. (Since he is going backwards, he can’t use vision.) He uses the tilt of

the ramp to confirm that he is on the charger

4. He also checks that he is in the right spot by looking for power to his charging pads, as

reported by body-board charging circuit. If he is unable to find the spot, he grumbles about

it, drives off and retries.

Vector has a cute low light mode that turns on most of the pixels on his display to see a bit more,

and locate his home.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 341

95. COMPANION CUBE

Vector has a companion cube that he can pickup, illuminate the lights on, and detect taps. The

cubes design is described in chapter 5.

Vector can roll his cube, shove it around, use it to “pop a wheelie,” and pick it up. To do these, he

must line up squarely with cube. Vision was found to be needed in the Cozmo to align precisely

enough to get the lift hooks into the cube.

95.1. COMMUNICATION

Vector connects with the cube via Bluetooth LE. This communication link provides the ability for

Vector to:

 Discover cubes

 Pair with a cube (note that Vector can pair with only one cube, and if he is not already

paired, he will automatically pair with the first cube he receives Bluetooth LE advertising

for.)

 Check the firmware version

 Update the cube firmware

 Check the cube’s battery level

 Detect the cube orientation

 Detect taps on the cube

 Turn the cubes lights on and off.

The HTTPS API provides the following Cube-related commands:

 List the available cubes, see Chapter 15, section 53.4 Cubes Available

 Forget (or unpair) from his preferred cube, see Chapter 15, section 53.8 Forget Preferred

Cube

 Pair to the first cube detected, see Chapter 15, section 53.15 Set Preferred Cube

 Connect to his cube , see Chapter 15, section 53.3 Connect Cube

 Disconnect from the cube, see Chapter 15, section 53.5 Disconnect Cube

 Dock with his cube, see Chapter 15, section 53.6 Dock With Cube

 Flash cube lights, see Chapter 15, section 53.7 Flash Cube Lights and 53.14 Set Cube

Lights. The later allows using a complex pattern

 Pick up an object (his cube), see Chapter 15, section 53.9 Pickup Object

 Place his object (his cube) on the ground, see Chapter 15, section 53.10 Place Object on

Ground Here

 Pop a wheelie, see Chapter 15, section 53.11 Pop A Wheelie

 Roll his cube, see Chapter 15, section 53.12 Roll Block and 53.13 Roll Object

The state of the cube is reported to the HTTPS API.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 342

As the state of the cube changes, the following events are posted to the API:

 The cubes battery level, see Chapter 15, section 53.2.1 CubeBattery

 A loss of the connection with the cube, see Chapter 15, section 53.2.2 CubeConnectionLost

 The robot state event (see Chapter 15, section 63.3.1 RobotState) provides other info about

Vector’s attempt to interact with the cube. This includes what object he is carrying. There

are bits to indicate when

o Vector is carrying his cube

o His picking up or moving to dock with his cube

 The object event (see Chapter 15, section 45.2.1 ObjectEvent) provides other info about the

state of the cube as it happens: taps, loss of connection, state of connection, being moved,

etc.

95.2. ACCELEROMETER

The cube has an accelerometer built in – the software can used this to determine the cube’s

orientation, whether it is being held, and to detect taps (or double taps). The software detects

these by have the Cube stream accelerometer data, filtering and looking for patterns. In that way,

the orientation and being held sensing is very similar to how Vector measure his own orientation

and decides if he is being held:

Cube
Low Pass

Filter

Classifier

orientation

High Pass

Filter Being held

The software also detects taps by filtering and looking for shock pattern:

Cube
High Pass

Filter
Tap detect

Double-tap

detect
Double-tap

detected

Tap detected

95.3. DOCKING

The docking with a cube is based on the Hanns Maneuver, named for Hanns Tappeiner who

described it to his team.

96. CUSTOM ITEMS

Vector can be told about custom objects. Once Vector knows about these, he can identify the

object and track it on his map, or navigate around them. Objects with markers are reported to SDK

based applications for custom processing.

Defining a custom object takes three kinds of information. First, the shape of the item – whether it

is a “wall,” box or cube. Second, assign some of the handful of predefined symbols to the item;

this is optional. And third, measure the size of the marker symbols and object.

There are four kinds of custom objects that can be defined:

cube sensing

Figure 92: Sensing

motion events

Figure 93: The tap

detector

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 343

 A fixed, unmarked cube-shaped object.

 A flat wall with only a front side,

 A cube, with the same marker on each side.

 A box with different markers on each side.

96.1. A FIXED, UNMARKED OBJECT (CUBE-SHAPED)

The object is in a fixed position and orientation. This cube can’t be observed since it is unmarked.

So there won’t be any events related to this object. “This could be used to make Vector aware of

objects and know to plot a path around them.”

96.2. CUSTOM WALL DEFINITION

The second type of custom object is a wall. It has a single marker on the front face.

m
a

rk
e

r
h

e
ig

h
t

(m
m

)

h
e

ig
h

t
(m

m
)

10
 m

m

marker width (mm)

width (mm)

Center

The marker must be horizontally and vertically centered. The width of the marker doesn’t have to

be the same as the height… but probably should be.

The body origin is the 5mm behind the center of the face. When Vector is tracking the position

and orientation of this object, the position it gives for the point in the wall 5mm behind the face, at

half the height and width – the center of the wall.

Figure 94: The

custom wall

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 344

96.3. CUSTOM CUBE DEFINITION

The third type of custom object is a cube. A cube’s width, height and depth are all the same size.

A cube has the same marker on all 6 faces (not shown below):

s
iz

e
 (

m
m

)

si
ze

 (m
m

)

size (mm)

marker width (mm)

m
a

rk
e

r
h

e
ig

h
t

(m
m

)

The marker must be horizontally and vertically centered on each face. The width of the marker

doesn’t have to be the same as the height… but probably should be.

The body origin is the very center of the cube. When Vector is tracking the position and

orientation of this object, the position it gives is for the very center of the cube, not for a visible

face.

Figure 95: The

custom cube

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 345

96.4. CUSTOM BOX DEFINITION

The fourth (and final) type of custom object is a box. Although they have similar names, a custom

box differs from a custom cube in two ways. With a box, the height, width and depth can all be

different sizes. Second, each face has a different marker symbol associated with it, so that Vector

can match it up with the size of that side.

h
e

ig
h

t
(m

m
)

de
pt

h
(m

m
)

width (mm)

marker width (mm)

m
a

rk
e

r
h

e
ig

h
t

(m
m

)

The marker must be horizontally and vertically centered on each face. The width of the marker

doesn’t have to be the same as the height… but probably should be.

The body origin is the very center of the box. When Vector is tracking the position and orientation

of this object, the position it gives is for the very center of the box, not for a face.

96.5. COMMUNICATION

The Chapter 15 HTTPS API provides the following custom-object related commands:

 Create a custom unmarked object (see Chapter 15 section 45.3 Create Fixed Custom

Object) or one with markers that can be tracked (see Chapter 14 section 45.4 Define

Custom Object)

 Drive to the object, see Chapter 15 section 59.4 Go To Object. Note Vector thinks in terms

of the center of the object, not the face; for larger objects add the distance from the center

to the face for Vector’s position.

As the state of the cube changes, the following events are posted to the API:

 The object event (see Chapter 15, section 45.2.1 ObjectEvent) provides other info about the

state of the object as it happens: that is observed or lost,, being moved, that it’s orientation

has changed etc.

Figure 96: The

custom box

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 346

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 347

PART V

Animation

Vector uses animations – “sequence[s] of highly coordinated movements, faces, lights, and

sounds” – “to demonstrate an emotion or reaction.” This part describes how the animation system

works.

 ANIMATION. An overview how Vector’s scripted animations represents the “movements,

faces, lights and sounds;” and how they are coordinated

 LIGHT ANIMATION. An overview of the backpack and cube light animation.

 DISPLAY & PROCEDURAL FACE. Vector displays a face to convey his mood and helps form an

emotional connection with his human.

 AUDIO PRODUCTION. A look at Vector’s sound effects and how he speaks

 MOTION CONTROL. A look at how Vector’s moves.

 ANIMATION FILE FORMAT. The format of Vector’s binary animation file.

drawing by Steph Dere

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 348

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 349

CHAPTER 22

Animation

This chapter describes Vector’s animation engine:

 Animation Engine, animation groups, triggers, and events

 Animation file formats

97. ANIMATION TRIGGERS AND ANIMATION GROUPS

An animation is a scripted “sequence of highly coordinated movements, faces, lights, and

sounds.” Vector uses animations “to demonstrate an emotion or reaction” as well as many other

physical moments. Vector’s small, light frame allows him to make quick physicals motions to

represent his little tantrums and other emotions.

Emotion

Engine

Backpack

Lights

Emotion state

Animation trigger

Select

animation

based on

mood

Animation

Animation

Engine

Sound

files &

parametric

sounds

Cube

Lights

Display

animation

Sprites &

Text

Procedural

Face Controller

· Face tilt

· Eye controls

Motion Control

· Head angle

· Lift height

· Turn in place

· Driving

SDK

applications

Vic-

Gateway
Vic-AnimVic-engine

Not surprising, much of the animation is carried out by vic-anim. The motor controls, including

driving along a path, are performed in vic-robot.

Vector employs two levels of referring to an animation. Individual animations have an

animation name. Animations are also grouped together by type, with an identified for the group

called an animation trigger name. Vector “pick[s] one of a number of actual animations to play

based on Vector's mood or emotion, or with random weighting. Thus playing the same trigger

twice may not result in the exact same underlying animation playing twice.”

animation

Figure 97: The

behaviour-animation

flow

animation name

animation trigger

name

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 350

97.1. FILES

The animation system employs many files, working in concert to effect the animation. The top

level files map trigger names to the next level, which may be groups of animations, display

compositing tables, or (in the case the lights) the patterns to illuminate the lights with. In the case

of animation groups, these further map to sprite sequences to display (which then maps to image

files), and sounds play. The compositing image maps also map to these sprite sequences.

Image Map
Sprite

Sequence

Animation

JSON & Bin

Backpack

Animation

Trigger Map

Animation

Groups

Image

Layout

Cube Light

Sequence

Cube

Animation

Trigger Map

Backpack

Light

Sequence

Animation

Trigger Map

Composite

Image

Layout Map

Composite

Image Map

Map

WEM

Audio

Files

WEM

Audio

Files

WEM

Audio

Files

Sound

Bank Files

Sound

Bank Files

WEM

Audio

Files

WEM

Audio

Files

PNG

Image

Files

There are seven types of animation files and other animation sources:

 JSON files that describe how the backpack lights should behave (see Chapter 23)

 JSON files that describe how the cube lights should behave (see Chapter 23)

 Binary animation files holding one or more of related animations that coordinate

sophisticated sounds, eye animations, linking together sprite sequences, and coordinate

head & lift movements with driving (see Chapter 27 for details of this file)

 JSON animation files are very similar to binary animation files. They hold one or more of

related animations that coordinate sophisticated sounds, eye animations, linking together

sprite sequences, and coordinate head & lift movements with driving (see Chapter TBD for

details of this file)

 Sprite sequences (see Chapter 24), which are folders of PNG image files to display in

sequence

 Composited screens (see Chapter 24) showing icons and text information driven by the

behaviors and cloud server intents.

 Sound files (see Chapter 25) holding pre-recorded sound effects

 Procedural animations are generated by vic-anim. These perform text to speech, driving

around obstacles, animating Vector’s eyes, and other tasks that are not practical to script in

a file.

And there are four kinds of files gluing these together:

 JSON files that map the trigger names to the animation groups, and to the backpack and

cube light animations. (These will be described below.)

Figure 98: The

behaviour-animation

flow

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 351

 The animation group files with rules on how to select one or more individual animations,

including with the weighted randomization and emotion filters. (These will be described

below.)

 The animation binary file may direct a sprite sequence and/or audio file to play. These will

be described in Chapter 27

 JSON files to layout the display; these may call out animation sequences and places to

composite icons and text. These will be described in Chapter 24

97.2. NAMING CONVENTIONS

Helpfully, many of the animation files in the resource folders follow a naming convention. The

prefix in the name indicates its intended use:

Prefix Used by

ag_ Animation groups

anim_ Animation files (both binary and JSON)

face_ A sprite sequence

The files mapping a name to other files, or other information, end with “Map”.

The names of the animation clips start with the base name of the animation file that contains them.

(It may even be the same name). This makes it easier to find the animation file given the clip

name.

97.3. TRIGGER MAP CONFIGURATION FILES

The list of animation triggers provided to the SDK is built into libcozmo_engine.so. The internal

configuration files support a much wider range of animation triggers; it is not known if passing

one these will work, or will be filtered out.

The animation trigger name is mapped to an animation file (and group of animations). The table

that defines this mapping is found in the following file:

/anki/data/assets/cozmo_resources/ assets/cladToFileMaps/AnimationTriggerMap.json

(This path is hardcoded into libcozmo_engine.so.)

The format of the files is the same. The file is an array of structures. Each structure has the

following fields:

Field Type Description

AnimName string The name of the animation group. This is the name of a

JSON file, without the “.json” suffix.

CladEvent string This is the animation trigger name to match when looking

up the animation.

The cube’s and backpack light animation file name is usually the same as the trigger, except that

the first letter is lower case.

Table 491: Animation

file prefixes

mapping trigger

names to animation

groups

Table 492: JSON

structure mapping

trigger name to

animation group

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 352

97.4. ANIMATION GROUP FILES

In the “AnimationTriggerMap.json” file (describe above), the “AnimName” field value maps (when

the suffix “,json” is appended) to animation groups are located in the following folder tree:

/anki/data/assets/cozmo_resources/ assets/animationGroups

This path is hardcoded into libcozmo_engine. Inside are folders (grouping the animation groups),

each of which holds the JSON files. By convention, the animation group file names are all lower

case. Some names may look similar to the trigger name (but not always).

Each animation group JSON file is a structure with the following fields:

Field Type Description

animations AnimationGroupItem[] An array of animations to select from to play.

The AnimationGroupItem structure describes the specific animation clip to use. It may also

specify some head movement, with some variability; this is optional. The structure has the

following fields:

Field Type Units Description

CooldownTime_Sec float seconds The minimum duration, after this animation has completed,

before it can be used again. Typically 0.0

HeadAngleMin_Deg float degree The head is to move to random angle greater (or equal) to

this. This should be in the range -22.0° to 45.0°. Only

used if UseHeadAngle is true.

HeadAngleMax_Deg float degree The head is to move to random angle les than (or equal) to

this. This should be in the range -22.0° to 45.0°. Only used

if UseHeadAngle is true.

Mood string emotion
name

The name of a “simple mood” that should be applied or

“Default”. See Chapter 29 for more information on simple

moods.

Name string The name of the animation clip to play. This clip is defined

within one of the animation binary files. The binary file

(without the “.bin” suffix) or the JSON file (without the

“.json” suffix) for the animation.

UseHeadAngle bool If true, this enables the head to be moved to some random

within the specified range. Optional, default is false

Weight float How much “weight’ to give to this entry. Typically 1.0

The possible animations are screened for being applicable to the current emotional state (with

Mood). The result set is randomly selected from: The weights (of the select items) are summed up

and normalized, giving the probability that that entry would be selected.

98. ANIMATIONS

98.1. ANIMATION TRACKS

Each animation may use one more tracks. The tracks can control:

 The display graphics – compositing a movie , text, and eyes layers

animation groups

Table 493: Animation

group file JSON

structure

Table 494:

AnimationGroupItem

structure

animation tracks

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 353

 Animating the backpack and cube lights

 Audio effects

 Moving the head

 Moving the lift

 Moving the treads, or navigating

When an animation is played, it locks the tracks that it is using, for the duration of the animation.

If one of the tracks that it needs to use is already locked, the animation can’t be played (and

generates an internal error).

When an animation is submitted to be played, a several of tracks (the lift, head and body) can be

flagged to be ignored if they already used elsewhere by animation system.

98.2. ANIMATION FILES

There are two kinds of files: binary and JSON files. The animation binary files are held in the

following folder:

/anki/data/assets/cozmo_resources/ assets/animations

This path is hardcoded into vic-anim. Each of these files may contain several animations (called

clips). By convention, the name of the animation starts with the name of the file. See Chapter 27

for a detailed description of these files.

98.3. ANIMATION NAMES MANIFEST

A list of animation names and their duration is located in manifest file at:

/anki/data/assets/cozmo_resources/ assets/sprites/anim_manifest.json

This path is hardcoded into libcozmo_engine. The file is an array of structures. Each structure

has the following fields:

Field Type Units Description

length_ms int ms The duration of the animation (when played)

name string The name of the animation clip within one of the animation

binary or JSON files.

99. SDK COMMANDS TO PLAY ANIMATIONS

The HTTPS SDK includes commands to list and play animations.

 A list of animations triggers can be retrieved with the List Animation Triggers command

(see Chapter 15 section 48.3 List Animation Triggers).

 A list of animations can be retrieved with the List Animation command (see Chapter 15

section 48.2 List Animations).

 An animation can be play by selecting the animation trigger (see Chapter 15 section 48.5

Play Animation Trigger command). Vector will select the specific animation from the

group. Or,

animation duration

manifest

Table 495: JSON

structure mapping

animation name to

duration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 354

 An animation can be play by the giving the specific animation name (see Chapter 15

section48.4 Play Animation).

As the individual animations are low-level they are the most likely to change, be renamed or

removed altogether in software updates. Anki strongly recommends using the trigger names

instead. “Specific animations may be renamed or removed in future updates of the app.”

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 355

CHAPTER 23

Lights Animation

This chapter describes the light animations:

 The Cube Spinner game, which is one user of this type of lights animation

 Backpack Lights animation

 Cube Lights Animation

100. LIGHTS ANIMATION OVERVIEW

The backpack lights are used to show the state of the microphone, charging, WiFi and some other

behaviours. The companion cube lights are show setting up the cube, entertainment while Vector

is interacting with it, and for games. There are three interrelated sources of light animation.

 Animation binary file to animate the backpack lights. This drives most of the light

animation.

 JSON files for the Cube and backpack light animation. There are four kinds of JSON files:

files for the Cube’s light sequence, files for the backpack light sequence, two files to map

animation trigger names to each of those light sequences.

 The Cube Spinner game, which is a notable client of the JSON-driven light animations..

The light animations may be triggered by the cube spinner game configuration, or by behaviors

(within libcozmo_engine), such as those related to exploring, interaction, pouncing etc.

The companion cube and backpack light animations are very similar, so they have been grouped

here for discussion.

101. CUBE SPINNER GAME

The cube spinner game was “like a little roulette wheel on the cube. The lights would spin

around and you and Vector competed to make them stop at the right combination.” Although

developed early, it was not enabled in any of the Anki software releases. It is thought that

version 1.7 would have enabled it.

The Cube Spinner game’s configuration file is located with the behavior folders:

/anki/data/assets/cozmo_resources/ config/engine/behaviorComponent/cubeSpinnerLight

Maps.json

This is path hardcoded into libcozmo_engine.

cube spinner game

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 356

This configuration file is unlike the behavior files in that it doesn’t have a behavior class or ID. It

is used to map game events to animation triggers for backpack and cube lights. The events names

are defined in libcozmo_engine.so. The configuration file structure has the following fields:

Field Type Description

lightMap LightMap[] This is an array of alternatives mappings from

events to the animation triggers.

playerErrorCubeLights string The animation trigger name for the

playerErrorCubeLights event.

startGameCubeLights string The animation trigger name for the

startGameCubeLights event.

Each of the LightMap structures has the following fields:

Field Type Description

backpackLights BackpackLightMap This structure maps event to animation trigger

names appropriate for the backpack light

animation.

cubeLights CubeLightMap This structure maps event to animation trigger

names appropriate for the cube light animation.

debugColorName string A name like “blue”. This likely is used to provide

the active mapping to a tool during development.

BackpackLightMap is a structures used to map an event to an animation trigger name. The

animation trigger name is mapped to backpack light animation, see chapter 22. This structure has

the following fields:

Field Type Description

celebration string The animation trigger name for the celebration

event.

holdTarget string The animation trigger name for the holdTarget

event.

selectTarget string The animation trigger name for the selectTarget

event.

CubeLightMap is a structures used to map an event to an animation trigger name. The animation

trigger name is mapped to cube light animation, see chapter 22. This structure has the following

fields:

Field Type Description

celebration string The animation trigger name for the celebration

event.

cycle string The animation trigger name for the cycle event.

locked string The animation trigger name for the locked event.

lockedPulse string The animation trigger name for the lockedPulse

event.

lockIn string The animation trigger name for the lockIn event.

Table 496: Cube

spinner light map JSON

structure

Table 497: LlightMap

JSON structure

Table 498:

BackpackLightMap

JSON structure

Table 499:

CubeLightMap JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 357

102. BACKPACK LIGHTS ANIMATION

The sequence to illuminate the backpack lights is found by

1. The Cube Spinner name produces an animation trigger name

2. The animation trigger name is mapped to an animation file

3. The animation file provides the sequence to illuminate the backpack lights.

102.1. TRIGGER MAP CONFIGURATION FILES

The table mapping the animation trigger name to the backpack lights animation file is found in

the following file:

/anki/data/assets/cozmo_resources/ assets/cladToFileMaps/BackpackAnimationTriggerM

ap.json

This path is hard coded into vic-anim. This file maps the trigger name to the name of the animation

file. The file’s schema is the same as in Chapter 22, section 97.3 Trigger Map Configuration files

102.2. THE BACKPACK LIGHTS PATTERN

Vic-anim controls the backpack lights based on specifications in JSON files in

/anki/data/assets/cozmo_resources/ config/engine/lights/backpackLights/

The path is hard coded into vic-anim. All of the JSON files have the same structure with the

following fields:

Field Type Units Description

offColors array of
3 colors

RGBA Each color corresponds to each of the 3 lower back pack

lights. Each color is represented as an array of 4 floats (red,

green, blue, and alpha), in the range 0..1. Alpha is always 1.

offPeriod_ms int[3] ms The “off” duration for each of the 3 back pack lights. This is

the duration to show each light in its corresponding “off” color

(in offColors).

offset int [3] ms This holds how many milliseconds each light’s clock is

advanced from the clock driving the animation. This is used to

stagger each lights progression through the animation

sequence.

onColors array of
3 colors

RGBA Each color corresponds to each of the 3 lower back pack

lights. Each color is represented as an array of 4 floats (red,

green, blue, and alpha), in the range 0..1. Alpha is always 1

(the value is ignored).

onPeriod_ms int[3] ms The “on” duration for each of the 3 lights. This is the duration

to show each light in its corresponding “on” color (in

onColors).

transitionOffPeriod_ms int [3] ms The time to transition from the on color to the off color.

transitionOnPeriod_ms int [3] ms The time to transition from the off color to the on color.

mapping trigger

names to light

sequences

Table 500: The

Backpack LEDs JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 358

Note: These sequences do not have the parametric variation based on emotion or random

weighting.

103. CUBE LIGHTS ANIMATION

The sequence to illuminate the backpack lights is found by

1. The Cube Spinner name produces an animation trigger name

2. The animation trigger name is mapped to an animation file

3. The animation file provides the sequence to illuminate the cube lights.

103.1. TRIGGER MAP CONFIGURATION FILES

The table mapping the animation trigger name to the cube lights animation file is found in the

following file:

/anki/data/assets/cozmo_resources/ assets/cladToFileMaps/CubeAnimationTriggerMap.jso

n

This path is hardcoded into libcozmo_engine.so. This file maps the trigger name to the name of

the animation file.

The file’s schema is the same as in Chapter 22, section 97.3 Trigger Map Configuration files,

103.2. CUBE ANIMATIONS

The cube light animation files are located in:

/anki/data/assets/cozmo_resources/ config/engine/lights/cubeLights

and within folders (and sub-folders) therein. This path is hard-coded into libcozmo-engine.

All of the cube light animation JSON files have the same structure. They are an array of structures.

(There is usually one item, but there may be more.) Each structure may contain the following

fields:

Field Type Units Description

canBeOverridden Default is true. Optional.

duration_ms float ms If zero, do this until told to stop, otherwise perform the animation

for this period and proceed to next structure or stop.

pattern see below A structure describing the light patterns. Described below.

patternDebugName string A text name that is associated with this structure. Optional.

Table 501: The Cube

LEDs JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 359

The pattern structure contains the following fields:

Field Type Units Description

offColors array of
4 colors

RGBA Each color corresponds to each of the 4 cube lights. Each

color is represented as an array of 4 integers (red, green, blue,

and alpha), in the range 0..255. Alpha is always 255.

offPeriod_ms int[4] ms The “off” duration for each of the 4 cube lights. This is the

duration to show each cube light in its corresponding “off”

color (in offColors).

offset int[4] This holds how many milliseconds each light’s clock is

advanced from the clock driving the animation. This is used to

stagger each lights progression through the animation

sequence.

onColors array of
4 colors

RGBA Each color corresponds to each of the 4 cube lights. Each

color is represented as an array of 4 integers (red, green, blue,

and alpha), in the range 0..255. Alpha is always 255.

onPeriod_ms int[4] ms The “on” duration for each of the 4 cube lights. This is the

duration to show each cube light in its corresponding “on”

color (in onColors).

rotate boolean ? Possibly to have the colors be assigned to the next clockwise

(or counterclockwise) light periodically?

transitionOffPeriod_ms int[4] ms The time to transition from the on color to the off color.

transitionOnPeriod_ms int[4] ms The time to transition from the off color to the on color.

This structure is very similar to that used by the backpack lights. The obvious differences are:

 There are 4 lights (instead) of three,

 The RGBA value range is 0..255; and

 There is a boolean “rotate” field.

Table 502: The Cube

LEDs pattern structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 360

CHAPTER 24

Video Display & Face

Vector’s LCD is used to display his face, which conveys his mood and forms an emotional

connection with his human, and to display the results of behaviour interactions:

 The image compositor

 The sprite manager

 Animated compositions

 Procedural face

104. OVERVIEW OF THE DISPLAY

Vector displays imagery – often moving imagery – on his display. The items drawn on the screen

include:

 Full screen sprites — each frame is a PNG image that covers the whole display. A

sequence of frames (PNGs) is drawn regularly to create the animated effect.

 Composited images and text

 Procedural face to draw the face in a complex way (more on this later)

The first two are used as part of behaviors and intents. A visual “movie” is shown when the

behavior starts and another is to provide the response. The compositor map allows mixing in

iconography, digits and text to show information in the response.

Vector’s eyes are drawn in one of two ways:

 Using the full-screen sprites above, with the eyes pre-drawn in the PNG’s

 Using procedural face which synthesizes the eyes

Note: the sprite and procedural face can be drawn at the same time, with sprites drawn over the

eyes. This is done to create weather effects over Vector’s face.

104.1. ORIGIN

The display system – especially the procedural face module – was pioneered in Cozmo. To

prevent burn in and discoloration of the OLED display, Cozmo was given two features. First,

Cozmo was given regular eye motion, looking around and blinking. Second, the illuminated rows

were regularly alternated to give a retro-technology interlaced row effect, like old CRTs.

Vector’s eyes are more refined, but kept the regular eye motion. The interlacing was made

optional, and disabled by default.

US Patent 20372659

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 361

104.2. RENDERING SYSTEM

The display is layered, placing sprites on top, followed by the compositional layout and, finally,

the procedural face.

PNGPNG
Sprite (PNG)

Layer
Composition

layer

Procedural face

The rending and compositing these different layers look like:

Sprite

Animation

Color

Preferences

Procedural

Face

Composition

Image buffer

Image

Python SDK

applications
Vic-Gateway

Vision

processing
Camera

MIPI

As a functional flow, the top level is:

Load PNG
Composite

onto buffer

Render

Procedural

Face

LCD display
Send

changes SPI

104.2.1 Frame buffer

Prior to version 1.0, Vector used the kernel-based frame buffer (/dev/fb0). The frame buffer

driver was responsible for buffering the screen image, then transferring it via SPI to the LCD. The

frame buffer device driver also tracks the width and height of the screen, and the pixel format, and

making the pixel memory available as buffer that processes could memory-map to composite to.

Vector switched to using TBD in the application software to composite the frame, and to transfer

the changes to the LCD. It skipped the kernel drivers, except the SPI driver. The effective frame

rate was sped up by sending only the changes.

The applications vic-anim, vic-boot-anim, and vic-rescue still reference the frame-buffer /dev/fb0.

This is most likely compatibility or fall-back support, and would have been removed in a future

release.

Figure 99: The

display layers

Figure 100: The

display animations

composition

Figure 101: The

display animations

functional flow

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 362

105. IMAGE LAYOUT, COMPOSITION, AND SPRITE SEQUENCES

The animation system maps some trigger names to:

 A screen layout defining rectangular areas on the display (called sprite boxes) where

images and sprite sequences will be drawn.

 Sprite sequence to display in the layout areas. Not all screen layouts have an associated

sprite sequence.

These forms are only used by a couple of behaviors, to support the weather, timers, and the

blackjack game. Version 1.7 began the process of migrating to a slightly different structure that

used the binary animation file.

105.1. BOOT ANIMATION

Vector, while his system starts up, plays an animation on the screen. The boot animation file is a

series of uncompressed frames that are played in a loop. Each frame is 184x96 pixels; each pixel

is in the RGB565 format. This boot animation is held in the following file:

/anki/data/assets/cozmo_resources/config/engine/animations/boot_anim.raw

The full path is hardcoded into vic-bootAnim.

105.2. MAPPING ANIMATION TRIGGER NAMES TO LAYOUTS

There are two related files used to map animation trigger names to the layout and possible sprite

sequence to display.

105.2.1 Maps to layout

The table mapping the layout trigger name to the layout file is found in the following file:

/anki/data/assets/cozmo_resources/ assets/cladToFileMaps/CompositeImageLayoutMap.js

on

This path is hardcoded into libcozmo_engine.so. The format of the file is an array of structures.

Each structure has the following fields:

Field Type Description

CladEvent string This is the layout trigger name to match when looking up

the animation. (This name is also defined in

libcozmo_engine)

LayoutName string The name of the JSON file (without the “.json” suffix) for

the animation.

105.2.2 Maps to Image maps

The following table is used to translate an map trigger name to an image map. This translation

table is:

/anki/data/assets/cozmo_resources/ assets/cladToFileMaps/CompositeImageMapMap.json

Table 503: JSON

structure mapping

trigger name to

composite image layout

map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 363

This path is hardcoded into libcozmo_engine.so. The format of the file is an array of structures.

Each structure has the following fields:

Field Type Description

CladEvent string This is the map trigger name to match when looking up the

animation. (This name is also defined in libcozmo_engine)

MapName string The name of the JSON file (without the “.json” suffix) for

the animation.

105.3. LAYOUT FILE

A screen layout defines rectangular areas on the display where images and sprite sequences will be

drawn. The layouts are held in folders within:

/anki/data/assets/cozmo_resources/ assets/compositeImageResources/imageLayouts

This path is hardcoded into libcozmo_engine.

Each layout is formatted as the array of zero or more structures, although most have a single

structure. Each structure has the following fields:

Field Type Description

images SpriteBox[] An array of sprite boxes for showing icons and other

images.

layerName string The name of the layer. (This name is also defined in vic-

anim and libcozmo_engine) The animation engine may use

this to select the procedure(s) in charge managing the layer

and sprite boxes.

A sprite box defines a rectangular region on the display to draw an imagefrom a file. Each

SpriteBox structure has the following fields:

Field Type Units Description

height int pixels The height of the sprite box. This should be less than or

equal to 96.

spriteBoxName string The name of the sprite box. (This name is also defined in

vic-anim and libcozmo_engine.) The animation engine may

use this to select the procedure(s) in charge managing the

layer and sprite boxes. If an image map is available for this

animation, the sprite sequence it describes will be displayed

in this rectangle.

spriteRenderMethod string “CustomHue” if the PNG images should be converted from

gray scale to the colour using the current eye colour setting.

“RGBA” if the image should be drawn as is.

width int pixels The width of the sprite box. This should be less than or

equal to 184.

x int pixel The x coordinate of the upper left hand corner of the sprite

box. The x coordinate can be outside of the display area;

only the portion of the image within the display area

(0..183) will be shown. This allows an image to slide in.

Table 504: JSON

structure mapping an

animation trigger name

to an image map

Table 505: Display

layout JSON structure

Table 506: Sprite box

JSON structure placing

an image on the display

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 364

y int pixel The y coordinate of the upper left hand corner of the sprite

box. The y coordinate can be outside of the display area;

only the portion of the image within the display area (0..95)

will be shown. This allows an image to slide in.

See also Chapter 27 section 117.16 RobotAudio for an alternate method to define a sprite box.

105.4. IMAGE MAP FILE

An image map describes which sprite sequence to display (it just has a lot of extra steps). The

image map files are held in folders within:

/anki/data/assets/cozmo_resources/ assets/compositeImageResources/imageMaps

This path is hardcoded into libcozmo_engine.

Each image map file is formatted as the array of zero or more structures, although most have a

single structure. Each structure has the following fields:

Field Type Description

images SpriteMapBox[] An array of sprite boxes for showing sprite sequences.

layerName string The name of the layer. This name is also defined in vic-

anim and libcozmo_engine. The animation engine may use

this to select the procedure(s) in charge managing the layer

and sprite boxes.

Each SpriteMapBox structure has the following fields:

Field Type Units Description

spriteBoxName string The name of the sprite box. (This name is also defined in

vic-anim and libcozmo_engine.)

spriteName string The name of a sprite sequence. Note: the case of this string

may differ from the case used in the sprite sequence folder

name.

105.5. INDEPENDENT SPRITES

Independent sprites are PNG files. These image files are held in the following folders:

/anki/data/assets/cozmo_resources/ assets/sprites/independentSprites

/anki/data/assets/cozmo_resources/ config/sprites/independentSprites

/anki/data/assets/cozmo_resources/ config/facePNGs

/anki/data/assets/cozmo_resources/ config/devOnlySprites/independentSprites

These paths are hardcoded into libcozmo_engine, vic-anim. and vic-faultCodeDisplay. Not all of the

images in those paths are used.

The independent sprite PNG files can be any size so long as it fits within the width and height of

the display (184x96). The images may be colored, or in gray scale with an alpha channel. If the

sprite is grey-scale, it will be colourized with the current eye colour setting, using the gray scale for

the pixel brightness level.

Table 507: Image map

JSON structure

Table 508: Sprite map

box JSON structure

independent sprites

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 365

105.6. SPRITE SEQUENCES

Sprite sequences are PNG files that are displayed sequentially– each PNG makes up each frame

of the animation. These image files are held in folder with the same name as the sprite sequence

name. The sprite sequence folders are held in:

/anki/data/assets/cozmo_resources/ assets/sprites/spriteSequences

/anki/data/assets/cozmo_resources/ config/sprites/spriteSequences

and

/anki/data/assets/cozmo_resources/ config/devOnlySprites/spriteSequences

These paths are hardcoded into libcozmo_engine. Note: the folder name may have a different case

than the sprite sequence name used by the SpriteMapBox or the animation; the name should be

matched in a case insensitive manner.

The sprite sequence PNG files are sized to fill the display. The images must match the width and

height of the sprite box they are displayed in, or the display (184x96) if they are employed by a

binary animation file. The images may be colored, or in gray scale with an alpha channel. If the

sprite is grey-scale, it will be colourized with the current eye colour setting, using the gray scale for

the pixel brightness level.

These sprites are displayed as a sequence. The frame number is appended to the file name – range

from 2 to 5 digits – starting with 0. The frame rate is computed from the number of images in the

sequence (the number of frames) divided by the duration of the animation (given in the animation

manifest) that it is associated with.

The images are composited on top of the eye layer. The eyes may haven be turned off, or they may

be present.

105.7. DISPLAYING TEXT ON THE SCREEN

When Vector is operating, almost all of the text displayed is composited from image files (sprites).

There are two additional procedures that Vector can use to put text on the display:

 drawTextOnScreen() (part of libcozmo_engine)

 OpenCV’s putText() (part of OpenCV)

These are procedures are only used in exceptional circumstances. (The typeface is inelegant, if

they were something Vector used more frequently; undoubtedly they’d have improved typeface

designs.) They are used to display the fault codes (via Vic-faultCodeDisplay), when the system is

unable to operate the software; and to display information on the customer care information screen

(CCIS) in vic-anim.

sprite sequences

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 366

106. PROCEDURAL FACE

Vector’s dynamic, moving eyes are brilliant, forming the gateway for an emotion connection.

They allow Vector to give eye contact, facial expressions, and his current sentiment. These eyes

are drawn by the procedural face manager.

The parameters of the face controls are divided into the overall view of the face and the individual

characteristics of each eye:

Face center

s
c
a
le

 Y

angle

scale X

Hotspot

Center

The high level face animation parameters include:

 The color to draw the eyes in. Vector’s eye color is a preference setting, but can be

temporarily overridden by the SDK.

 The position of the center of the face

 The angle of the face; tilt (or rotation) of the face gives the impression of tilting the head

 The scaling of the height and width of the face

 The illusion of gaze – the intuition that Vector is looking at something – is achieved by

giving each eye a soft spherical rounding effect. The center of the shading, the equivalent

of a pupil, may be moved around the eye area. This gives a sense of where Vector is

looking – and by moving the center, Vector can appear to be looking around. Coordinated

with the face detector, Vector can make (and maintain) direct eye contact.

 The outer shape of the eyes, which gives a sense of the emotions – smiling, frustration,

sleep etc.

 There is a scan line opacity factor. This controls how much alternating lines are

illuminated and darkened. A value of 1.0 has odd and even lines with the same coloring.

Where the eyes are looking is controlled within the procedural face manager, rather than in the

animation files. It controls the blink rate, the focus of the eyes and how much the eyes dart around.

The manager contributes looking at a face and making eye contact.

procedural face

Figure 102: Face

control points

face parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 367

106.1. THE RENDERING OF INDIVIDUAL EYES

The eyes are rendered with a gradient and a shape that is controllable by the animations. These

create a soft-face feel, combining the soft glow of the eye, along with rounded eyelids and

cheeks.

106.1.1 The Hot spot

The interior of the eye is rendered as a radial gradient from the eyes pupil, with the shape of the

eyes forming the clip path. The location of the center of each eye’s ‘pupil’ is called the hotspot

center:

Clip path

Hotspot

Center

Falloff

The shape of the eyes is parametrically controlled by the animation engine. An internal

configuration variable controls how fast the shading falls off from the center toward the edge. A

bit of random noise is added to remove the banding from the spherical gradient, and to give the

eyes shading a little texture. This too has an internal configuration variable to control the noise

factor.

106.1.2 The eye-shape clip path

Each eye has individual animation parameters that control its shape. These create the rounded

eyelids and cheeks by masking off some of the eye pixels. A line is drawn along the outer path to

complete the effect.

Upper inner

x radius

Upper outer

x radius

Lower inner

x radius
Lower outer

x radius

U
p

p
e

r
o

u
te

r

y
 r

a
d

iu
s

L
o

w
e

r
o

u
te

r

y
 r

a
d

iu
s

U
p

p
e

r
in

n
e

r

y
 r

a
d

iu
s

L
o

w
e

r
in

n
e

r

y
 r

a
d

iu
s

Glow (size and

lightness)

 The basic shape of the eye is controlled by the roundedness of the corners.

 The position of each eye is controlled by the center of the face;

 The size and width of the eye is created by the face’s scaling factors

spherical gradient

Figure 103: The

hotspot and center

removing gradient

banding

Figure 104: Basic

parameters of an

individual eye control

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 368

Each eye has controls for its eyelids (or cheek, depending on your perspective):

Bend of the

upper eyelid

Y position of the

upper eyelid

Upper eyelid angle

Bend of the lower

eyelid/cheek

Lower eyelid angle

Y position of the

lower eyelid/

cheek

 An arc represents the upper eye-lid and erases (or occludes) the upper portion of the eyes;

these help create the sleepy, frustrated/angry emotions.

 An arc represents the lower eyelid and cheek, and erases (or occludes) the lower portion of

the eyes; these help create the happy emotions

An eye can be made smaller – or to squint – by having no bend to the eyelids, but moving the

eyelids position closer to the center.

106.2. THE PROCESS OF DRAWING THE PROCEDURAL FACE

Each eye of the procedural face can be drawn with a process like:

Rotate and

scale

Composite

onto buffer

Render Eye

Lid

Render

Cheek

Render Eye

hotspot

gradient

Assuming that a complex clipping path is less efficient, the eye could be render as

1. The eye is rendered as a gradient pattern into a buffer, with the scale

2. The eye lid is drawn, forcing the pixels (of the eye lid area) to become transparent

3. The cheek is drawn, forcing the pixels (of the cheek area) to become transparent

4. The rectangle area where the eye will go is scaled, rotated, and offset for where the eye

will go

5. Each pixel in the translated rounded rectangle region is map to one in the eye pixel buffer,

and copied to the display buffer

107. COMMANDS

The HTTPS SDK API (Chapter 15) includes commands that affect the display

 Display RGB image (see Chapter 15 section 55.2 Display Image RGB)

Figure 105:

Parameters of an eyes

eyelids (or cheeks)

Figure 106: The

functional flow of

drawing an eye

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 369

 Mirror display (see Chapter 15 section 55.3 Enable Mirror Mode)

108. REFERENCES AND RESOURCES

Monson, Nathaniel;Andrew Stein, Daniel Casner, Reducing Burn-in of Displayed Images, Anki,

US Patent 20372659 A1; 2017 Dec 28

Osipa, Jason, Stop Staring: Facial Modeling and Animation Done Right, 3rd Edition, 2010.

This “is a wonderful book on rigging eyes for 3D animation... that focuses on setting up eye

and face controllers.” (Mooly Segal)

https://github.com/juj/fbcp-ili9341

This is an interesting project to study for those who wish to look more into how differential

updates can be implemented.

https://github.com/juj/fbcp-ili9341

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 370

CHAPTER 25

Audio Production

This chapter describes how Vector produces sounds and the audio output system:

 An overview of the audio output

 Text to speech

 Audio Effects

109. SPEAKER

Vector uses sound to convey emotion and activities, to speak, and to play sounds streamed from

SDK applications and Alexa’s remote servers. There are five sources of sound:

 Sound effects from playing pre-recorded audio files

 Sound effects from parametrically generating audio

 Sound from an audio stream sent by the SDK application to Vector

 Text to speech

 A sound stream from Alexa Voice Services

To support this, Vector includes a sophisticated audio architecture:

Alexa

SpeakerALSA

Text To Speech

Acapela Engine

MPG123

SDK

applications

Vic-

Gateway
Vic-Anim

libaudio_engine

AudioKinetic Wwise

Vic-Engine

Compression is not used to send audio from SDK applications to Vector. The vic-engine passes

the received samples to audio engine to mix in its playback.

Figure 107: The audio

output architecture

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 371

Some key elements of the audio production are:

Element Description

ALSA This is Linux’s sound player, which provides the device drivers to allow software access to the

speaker.

Alexa Voice Services These are a set of remote servers that provide an audio stream of Alexa’s voice responses,

music, and other sounds.

libaudio_engine This is Vector’s sound framework. It is built on AudioKinetic’s Wwise framework. It handles

audio file loading and playback, sound effects, and others.

MPG123 The MPG123 is used to decode the sound stream sent from Alexa Voice Services servers.

Text to Speech The text to speech facility is used to convert text (written sentences) to spoken words. This is

built on Acapela’s speech engine.

110. SOUND EFFECTS FROM AUDIO FILES AND PROCEDURES

Vector uses AudioKinetic’s Wwise (WaveWorks Interactive Sound Engine) toolkit for sound

playback. Wwise is one of the most popular high-end game sound frameworks. It has

sophisticated composition tools, extensive documentation, and a redistributable player for many

platforms. Such a powerful tool seems overkill on device with only one output channel and a

tiny speaker. In context, it makes sense.

Wwise was used in Cozmo’s mobile application. The application which was designed as a kind of

video game, and employs a lot video game design approaches. So it makes senses that an audio

tool targeting video games would be used there. In turn, Vector is draws on Cozmo’s frameworks–

both the mobile application and what ran on the hardware – and creation tools it isn’t surprising

that the same framework would be employed by Vector.

The key features of Wwise (at least for Vector) are:

 Triggering sound effects, muting sounds, and changing parameters of sound playback (by

sending the framework audio events)

 Playing pre-recorded sounds, including looping

 Playing procedural sounds

 Playing music (in the case of Cozmo)

 Sound effects, including fading

 Change the sample rates from different sources to the one played

 Mixing different sound sources together

 Managing a library of files that specify how to respond to audio events, how to create

music and sound effects, and can hold pre-recorded sounds.

Table 509: The audio

systems functional

elements

AudioKinetic Wwise

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 372

110.1. SOUND PLUGINS

The Wwise framework provides hooks that allow it to be integrated into the rest of the software

system, and given extra functionality. This is accomplished by plug-in modules:

Audio

Engine

ALSA

Krotos

Vocoder

Hijack
Streaming

Wave

Portal

Wave

Portal

The most import plug-ins are the ones receiving the audio output (aka “sink” plug-ins). This is

how the audio sounds are taken from the audio engine and sent to Vectors speaker.

 The ALSA plug-in gathers the audio output and passes it to the “Advanced Linux Sound

System” (ALSA) sound handler, which in turn passes it thru to Qualcomm’s audio driver.

 The Hijack plug-in is probably unused on Vector, but is used on desktop computers to

allow recording of Vector’s sounds…? (It may also have been intended to be used as part

of the message-recording, with the microphone audio piped thru the audio engine to be

filtered/cleaned, and then saved.)

There are two plug-ins allowing audio from external sources to be processed by the audio engine

and delivered to Vector’s speaker:

 Wave Portal

 Streaming Wave portal. This receives the audio sounds from vic-engine for playback

Finally, there are the sound effects plug-ins:

 The Krotos “Dehumaniser” vocoder is used to give Vector his unique vocal qualities.

plug-ins

Figure 108: Plug-ins

in the Wwise audio

pipeline

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 373

110.2. AUDIO PIPELINE

In a sense, Wwise can be thought of having multiple, configurable pipelines to produce sound.

Each “game object” –perhaps a character, tool or machine, etc. – have its own pipelines for each

kind of sound/sound-effect it would make:

Audio Switch

Audio State

Sound files,

effects

Sound files,

effects

Sounds,

effects

Select

Audio Event

Parameter Setting
Key Value

Parameters

Key Value

States

Action(s)

Audio Switch

Categorization

The audio pipeline is driven by audio events it receives from the main application. These events

are like the animation triggers. The metaphor is that when something occurs in the application

(usually a video game), it represents this as an event distributed to a variety of subsystems to

respond to, including the audio engine. Typically an event will cause the audio engine to play a

sound, but the event system is much more powerful than that. Events trigger an action, which is

the heart of the pipeline, and it is the action that plays the sound. The actions, in turn, can be

configured to change sound parameters, stop playback, and so on:

“[Audio] events apply actions to the different sound objects or object groups in your

project hierarchy. The actions you select specify whether the Wwise objects will play,

stop, pause, .. mute, set volume, enable effect bypass, and so on.”

The Wwise framework employs event ID numbers to refer to events. Events can also be referred

to using lexical names – as strings. A later section will describe how to translate a string to an

event ID.

Audio parameters are settable values used by the actions that control how they sound. Vector

mainly uses these to adjust the sounds based on his current mood and activity. Like the action,

these parameters are on a per object (within the audio engine) basis.

An audio state is used to set the context for sound system overall, so that the right sounds and

effects are used in responding to events, and actions general across all of the game objects.

An audio switch is similar, but it sets up the context so that the right sound (or sound effect, etc)

is used for a particular object or event. AudioKinetic gives an example of foot-step events

triggering a footstep sound but the audio switch is set to the kind of surface that is being walked

on – selecting walking on grass, gravel, pavement, etc. . A switch can be automatically set by a

parameter, if it is set up to use different value thresholds to categorize it into one of the switch

states.

Figure 109: Overview

of the Wwise audio

pipline

audio event

audio action

WWise documentation

audio parameter

audio state

audio switch

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 374

110.3. HOW VECTOR USES WWISE

Vector’s design uses Wwise features to give a more life-like quality to his sounds. The sounds are

triggered in two different ways:

 The binary animation file can trigger sending audio events (by ID), setting parameters,

states and switches. See Chapter 27, section 117 for more information.

 The behaviors may emit audio events to convey Vector’s emotional state – sadness,

approval, etc. See Chapter 28, section 119.8 Audio events for more information.

To provide variation, when an audio event is received by the audio engine, it does not play just a

single, fixed sound file. Instead it triggers a sequence of sounds to play, each step randomly

selecting from a set of small sound files. The steps are configured to skip recently played sounds

(usually the last 6).

Audio Event

Sequence

Random

File 1

File 2

...

Random

File 1

File 2

...

Random

File 1

File 2

...

But that is not the full story: Some events have many possible sequences that could be played.

The audio engine selects the sequence based primarily on Vector’s current level of stimulation.

Audio Switch

Audio Event

Stimulation
Key Value

Parameters

Categorization
Settings

SequenceSequenceSequence

Random

File 1

File 2

...

Random

File 1

File 2

...

Random

File 1

File 2

...

The more stimulated Vector is, the more animated his sounds will be. If he is calm and not

particularly stimulated, he’ll be quieter.

 “This stimulation variable is a distillation of all possible environmental affects Vector

experiences. For example, ‘hey Vector’ or touch automatically triggers a 1.0, getting

stuck drop the [stimulation] to about 0.5, etc. .. We adapted the audio system to gradually

lower in probability and volume as the stimulation level lowered. The goal being that

active Vector users get a more lively sounding robot, and Vectors left on but not being

interacted with wouldn't be so chirpy.”

Figure 110: Sound

sequences with some

random variation

Figure 111: Choosing

different sound

sequences based on

stimulation

Ben Gabaldon

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 375

110.3.1 Other Potential Factors

The team at Anki explored selecting the sound sequence based on the current emotional state,

mood, activity, and other factors. This gives sounds that convey whether Vector is struggling to

do the task, is excited, is frightened, etc.

Audio Switch

Audio Event

Emotions
Key Value

Parameters

Mood Categorization

Body activity

Ambient conditions

SequenceSequenceSequence

Random

File 1

File 2

...

Random

File 1

File 2

...

Random

File 1

File 2

...

Settings

Vector’s emotion engine passes the current emotion state and mood to the audio engine. By setting

the audio parameters based on the current mood, Vector could give “feedback cues about the

robot's emotion state.” (See Chapter 29, section 121 Emotions, and Stimulation.) Different

emotions and moods – angry, frightened, trusting – each give can select different sound sequences.

Parameter Description

Robot_Vic_Confident This captures the emotion dimension “confidence”

Robot_Vic_Happy This captures the emotion dimension “happy”

Robot_Vic_Held_Trust This captures the emotion dimension “trust”

Robot_Vic_Purr_Level

Robot_Vic_Social This captures the emotion dimension “social”

Robot_Vic_Stimulation This captures the emotion dimension “trust”

Wolfrod et al

Figure 112: Choosing

different sound

sequences based on

mood, activity and

conditions

Table 510: Audio

parameters linked to

emotion state and

mood

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 376

The motion controller passes the current activity to the audio engine as well. When an action is

being performed, the animation may trigger the sound effect, perhaps to “simulate the physical

movement” he is making. These would be like intersectional tones that people make – grumbles,

and grunting.

Parameter Description

Robot_Vic_Head_Accelerate This is how fast the motor controller is accelerating Vector’s head movement.

Robot_Vic_Head_Position This is the position of Vector’s head.

Robot_Vic_Head_Speed This is linked to the speed that Vector’s head is moving at, and the direction it is

moving in.

Robot_Vic_Lift_Accelerate This is how fast the motor controller is accelerating Vector’s lift movement.

Robot_Vic_Lift_Position This is the position of the lift.

Robot_Vic_Lift_Speed This is linked to the speed that the lift is moving at, and the direction it is moving in.

Robot_Vic_Tread_Accelerate This is how fast the motor controller is accelerating Vector’s treads.

Robot_Vic_Tread_Speed This is linked to the speed that Vector is driving, and the direction it is moving in – at

least, when he is not spinning.

Robot_Vic_Tread_Spin_Speed This is linked to the speed that Vector is rotating at, and which direction.

As interesting as these ideas are, Anki found that the single stimulation level “was a better

distillation of all the AI going on.” “The behavior system was really difficult to rely on for

playing the appropriate sounds with.”

110.3.2 Game Object

The sounds events for these are directed to a special game object just for them. Most of Vectors

sounds are driven by the animation, and when they are sent to the audio engine, they are tagged

with “Animation” as their game object. For the procedural sound effects, the events are tagged

with “Procedural” as their game object.

Game Object Id Description

Animation This game object id is for events, settings, sounds and effects from the

animation engine.

Procedural Related to the sounds of moving (mostly treads)…..

110.4. EQUALIZER

The Wwise sound equalizer is used to compensate for some of the distortion of Vectors small

speaker. It is also used to “prevent the higher pitches from ever getting very loud” – something

that physically is possible despite the speakers small dimensions. The standards for toy sound

levels vary by country, but typically are limited to 75-80dB at the ear.

Table 511: Audio

parameters linked to

activity

Ben Gabaldon

Table 512: Game

objects

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 377

110.5. THE CONFIGURATION

The audio configuration and sound files are located in:

/anki/data/assets/cozmo_resources/ sound

There are three kinds of files located there: configuration files, sound bank files (which may

include sounds), and sound files.

110.5.1 The configuration files

These configuration file is

/anki/data/assets/cozmo_resources/sound/ SoundbankBundleInfo.json

This file name is hard coded into libaudio_engine. The file is n array of structures, each with the

following fields:

Field Type Description & Notes

bundle_name string A name?

language string “SFX” or “English(US)” (It isn’t clear how to interpret these.

path string The path of the sound bank file, relative to the location of the

configuration file.

soundbank_name string The name of the sound bank file, without the “.bnk” extension.

110.6. THE SOUND FILES

The concepts above are held within a network of sound bank and WEM files, starting with the

JSON configuration file which specifies the bank files to load:

Soundbank

BundleInfo.json
Init

Victor_UI

Victor_VO

Victor_Global_Data

Victor_SFXVictor_Alexa Victor_Dev

WEM FileWEM File WEM FileWEM File WEM FileWEM File

110.6.1 Sound Bank Files (BNK)

A sound bank is a binary file, composed of series tagged sections. Some sections are

 The sound bank file has setups for how the sounds flow from files (and other inputs), thru

mixers, and other filters to the output. It calls this the audio bus hierarchy.

 Sound effects,

 Music compositions to play, (these probably are used heavily in Cozmo, but appear unused

in Vector)

 State transition management, how altering the settings of effects during play.

Table 513: The sound

bank bundle info

JSON structure

Figure 113: The

relationship between

sound banks and

WEM files

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 378

 A map of audio events to the actions to carry out when that event occurs, such as playing a

sound, stopping other sounds, changing mixer settings, and so on

 The set of other sound bank files to load.

 WEM sound files, either embedded, or a reference to an external file.

Wwise always has an “Init.bnk” sound bank. It is loaded first, since it holds sections that are

shared across all of the sound bank files. It does not contain any sounds. The non-init sound

banks can define responses to events, etc and refer to external WEM files that provide pre-recorded

sounds.

The sound banks loaded later have priority – that is, they get first crack at providing resources.

Multiple sound banks can provide resource(s) with the same name, but the higher priority one

“wins”. This gives us an opportunity to customize the sounds on Vector, by adding new sound

banks to the end of the list specified in SoundbankBundleInfo.json.

Soundbank Description

Init.bnk This bank is mandatory. It holds the definition of WWise “game parameters”, and how they

become switch group settings, and states transition.

Victor_Alexa.bnk This bank responds to sound events by playing sound sequences that are specific to Alexa

functionality.

Victor_Dev.bnk This bank responds to sound events by playing sound sequences that are intended for Vector

developers, rather than end user use.

Victor_Global_Data.bnk Unknown. Doesn’t have any actual sound references

Victor_SFX.bnk Has the most of the events (to respond to) and the sound sequences to play. (At least those

that are not specific to Alexa, and Vector developer’s, and placed into section above)

Victor_UI.bnk Not used. In Cozmo this had sounds for the application UI.

Victor_VO.bnk Not used. In conventional games this bank is intended to hold the voice over sounds of

actors speaking; and different versions of the banks would be localized so that they are

spoken in the appropriate language and dialect.

110.6.2 “Wwise Encoded Media” WEM Files

WEM files are sound files. They are considered containers, since it is possible for the sound (in

the file) to be encoded in different formats, some standard and some custom. The file format is

custom to AudioKinetic, and automatically produced by AudioKinetic’s WWise tool. Like the

BNK file format, a WEM file is organized as tagged sections. The file names are ID numbers with

a “.wem” extension. (More on the generation of the ID numbers in the section.)

WEM files also including optional looping parameters. A sound file can be configured to loop

indefinitely or a fixed number of times.

In practice, Vector’s WEM sound files are usually single channel (mono) but may have two

channels. Two different AudioKinetic-specific encoding are used. A modified Vorbis-encoded

file. The key changes from a regular Vorbis stream are that they have their own packet wrapper;

the information shared across audio files has been separated out to make them smaller.

The second type of encoding used is an AudioKinetic specifc 16-bit little-endian IMA ADPCM

files. “IMA ADPCM” is an ugly, confusing acronym, but it is rather simple in practice:

 The decoder produces 16-bit values to feed to a digital to analog converter (DAC) and

Table 514: The

different sound banks

used in Vector

looping

IMA ADPCM

adaptive-differential

audio encoding

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 379

the amplifier and speaker; that is the pulse code modulation (PCM) portion.

 The sound file only has 4 bit values for each sample. Each 4 bit value is used as the index

into a pair of look up tables for how much to add to or subtract from the previous 16-bit

value for the new output; this is the adaptive differential (AD) portion.

 The tables and their interpretation are standardized by a committee, which is the IMA

portion.

This approach is easy for the processor, and takes little working memory. It does make for larger

files than, say, MP3 or other more sophisticated compression. That is acceptable since the sound

segments are all short, and Vector has a large storage area to hold the files.

This approach has one drawback. It uses only 4 bits in each sample to represent the change in the

analog waveform. Often this isn’t enough; it takes several samples to add or subtract enough for

the output to catch up to the desired values (from the source material). At “low” sample rates, this

can create audible distortion. The fix is to use a higher sample rate for encoding. First, there is

less change between two points closer together in time. Second, the higher rate lets the decoder

catch up faster; this effectively makes the distortion at high, inaudible frequencies. The play back

can be done with this higher sample rate, or it can be down-sampled again after decoding.

Vector (probably) down-samples many of the sound files (after decoding) during playback. The

audio files have sample rates much higher than is supported through the SDK audio channels:

many at 30,000 samples/sec, some as high as 44,100 sample/sec.

110.6.3 Wave files

The audio engine includes a facility to load wave files for sound (so long as they are RIFF with

PCM data). It likely it was added in preparation for the “messaging” feature. A message from a

friend could be recorded, and distributed to a particular Vector. vic-engine could trigger the

playback of the audio by vic-anim.

110.7. MAPPING AUDIO EVENT AND SOUND NAMES TO ID NUMBERS

The ID number used to identify the events and audio files is not random or entirely arbitrary. It

is formed from the text names used by sound engineers and software developers. The number is

automatically made from the text names of the events and sound by the AudioKinetic software50

using a Fowler-Noll-Vo hash function. (The number is used instead of strings to reduce runtime

memory and processing overhead during game play.)

The algorithm to compute the 32-bit hash number:

1. “Start with an initial hash value of FNV offset basis.” (Use 16777619 for this offset)

2. “For each [character] in the input,

a. “multiply [the] hash by the FNV prime,” (use 2166136261 for the prime.)

b. convert the next character to lower case

c. XOR the hash with the lower case character

50 https://www.audiokinetic.com/library/edge/?source=SDK&id=_ak_f_n_v_hash_8h_source.html

IDs from names

Fowler-Noll-Vo hash

https://www.audiokinetic.com/library/edge/?source=SDK&id=_ak_f_n_v_hash_8h_source.html

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 380

111. TEXT TO SPEECH

Vector includes a text to speech (TTS) facility. The engine is based on Cozmo’s text-to-speech

subsystem, with the text-to-speech engine from Acapela. The text to speech engine is part of vic-

anim, with some components in libcozmo_engine. Vector treats the process of speaking as a type

of animation, one with just an audio track. The audio for the speech is generated, and then handled

by the animation manager.51

The text-to-speech voices are stored in

/anki/data/assets/cozmo_resources/tts

The voice files include:

 co-French-Bruno-22khz

 co-German-Klaus-22khz

 co-Japanese-Sakura-22khz

 co-USEnglish-Bendnn-22khz

111.1. THAT DISTINCT ROBOTIC VOICE QUALITY

The text to speech engine produces human-sounding speech… so how does it get to be Vector’s

robotic voice? The audio is pumped through a vocoder (the Krotos Dehumaniser) in the sound

engine to give it a distinct sound.

Rest of

audio

engine

Pitch

Tracker

Multi-band

Equalizer

30ms

segmentation

Text To

Speech

The exact implementation isn’t known, but there are common techniques. A typical vocoder works

by estimating the pitch of the text-to-speech voice every 30ms, and then adjusting the gains

settings on a multi-band equalizer.

111.1.1 Pitch tracker

Krotos’ pitch detection – or pitch tracker – can be configured to use one five different algorithms:

1. Autocorrelation

2. Cepstrum

3. McLeod pitch detection method (MPM)

4. Frequency spectrum-based

5. YIN

51 https://forums.anki.com/t/multiple-actions-possibility-for-sdk/104

text to speech

Duhmaniser vocoder

Figure 114: High-level

vocoder functional

flow

pitch tracking

https://forums.anki.com/t/multiple-actions-possibility-for-sdk/104

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 381

30ms

segments
FFT Spectrum

Mel-

Cepstrum

Auto-

correlation YIN

McLeod

All there are distinctions between these methods, there are far more similarities. They all build on

basic techniques like autocorrelation, and fast-fourier transform (FFTs). An FFT computes a

spectrograph, giving the strength of each frequency. The simplest (or naive) approach is to find the

strong frequency and call it a pitch. This approach is easily fooled. A variety of other techniques

have been developed to work around this.

111.1.2 Autocorrelation

Autocorrelation is a slow, brute-force algorithm for finding the pitch. It works by shifting the

signal in slight amounts until the shifted signal best matches the original one. The core algorithm

looks something like:

for each sample offset (1... to big number)
 sum = 0
 for each sample index 0...num samples
 diff = samples[sampleIdx+sampleOfs] - samples[sampleIdx];
 sum += diff*diff

 keep track of the sample offsets with the smallest sums.

It does this compute the difference between each of the samples in the shifted waveform and the

waveform, square that difference, and then summing it up. The shift offset with the smallest offset

is the best match, and used to compute the pitch. Note: It only needs to try the offsets that cover

the first few kHz at the given sample rate.

This approach is an expensive way to find the pitch: Every audio sample must be scanned a huge

number of times.

111.1.3 YIN detection

YIN is uses auto-correlation and adds a few more “polishing” steps to improve its estimate: it

weights the different offsets, and blends together a few of the offsets that are close to the best

one.

111.1.4 McLeod Pitch Method (MPM)

McLeod’s pitch tracker (named for its author) improves on YIN in two ways. First is that it can

be implemented using a FFT to perform the autocorrelation step, and to estimate the pitch. (It

can still use the brute force method, if an FFT isn’t available.) This FFT autocorrelation is done by

1. Performing an FFT on the sample window.

2. Compute the square magnitude of each complex value – that is, multiply each complex

number by its complex conjugate. (Or, for those not steeped in the jargon,

real*real*+imag*imag, ignore the part where multiplying two imaginary numbers

becomes negative)

3. Compute the inverse FFT of this to compute the power vs frequency

Figure 115: Pitch

tracking methods

autocorrelation

Example 7:

Autocorrelation pseudo-

code

YIN detection

McLeod pitch method

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 382

4. Identify the frequency with the highest power associated with it

McLeod’s method, adds a few more polishing steps as well to clean this up and mix together a few

of the best results to get a better one.

111.1.5 Mel Cepstrum

The Mel Cepstrum method is similar to the FFT-base auto correlation, but tweaked to take into

account the psychology of pitch:

1. Performing an FFT on the sample window.

2. Compute the square magnitude of each complex value

3. Change from frequency (Hz) to “mel scale”,’ which is a perceptual scale for pitch

4. Compute the logs of all of those numbers on this scale

5. Compute a discrete cosine transform of this to compute the amplitude vs frequency

6. Identify the frequency with the highest amplitude associated with it

111.2. THE CONFIGURATION AND LOCALIZATION FILES

The configuration file for the text to speech engine is located at:

/anki/data/assets/cozmo_resources/ config/engine/tts_config.json

(This path is hardcoded into vic-anim.) This file is organized as dictionary whose key is the

operating system. The “vicos” key is the one relevant for Vector.52 This dereferences to a

dictionary whose key is the language base: “de”, “en”, “fr”, or “ja”. The language dereferences to

a structure with the following fields:

Field Type Description & Notes

pitch float This is a pitch setting field. This is not supported by all voices /

platforms. (The comment says that this is Acapela TTS SDK.)

“Pitch… adjustment is actually performed by audio layer.”

Optional.

shaping optional

speed float

speedTraits speedTraits[] Array of speed traits structures (see below). Optional

voice string a path to the ini file within the [assets/cozmo_resources/tts]

folder

Each speedTraits structure has the following fields:

Field Type Description & Notes

rangeMax uint

rangeMin uint

textLengthMax uint

textLengthMin uint

52 The other OS key is “osx” which suggests that Vector’s software was development on an OS X platform.

Mel Cepstrum

Table 515: The JSON

structure

Table 516: The

speedTraits JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 383

111.2.1 Localization

Vector internally has support for German, French, and Japanese, but the application-level language

settings only really support US, UK, and Australian dialects of English. The files for non-English

localization were not completed.

The localization files for feature stores its text strings (to be spoken) in

/anki/data/assets/cozmo_resources/ LocalizedStrings

This path is not present in versions before v1.6. The folder holds sub-folders based on the

language:

 de-DE en-US fr-FR

Note: there is no ja-JA, but it may be possible to create.

Inside of each are three files intended to provide the strings, for a behaviour, in the locale:

 BehaviorStrings.json

 BlackJackStrings.json

 FaceEnrollmentStrings.json

Each JSON file is a dictionary with the following fields:

Field Type Description & Notes

smartling53 structure see below to the structure below. Note all smarting structures

examined are the same.

The dictionary also includes keys, such as “BehaviorDisplayWeather.Rain” that map to a locale

specific string. These have the following fields:

Field Type Description & Notes

translation string The text in the given locale. The string may have placeholders,

such as {0}, where text is substituted in.

Each smartling structure has the following fields:

Field Type Description & Notes

placeholder_format_custom array of strings An array of patterns that represent possible placeholder patterns.

source_key_paths array of strings “/{*}” Strings are path of a JSON key?

translate_paths array of strings “*/translation” Strings are path of a JSON key?

translate_mode string “custom”

variants_enabled boolean

This is handled by libcozmo_engine, including the key strings.

53 it really has this key.

Table 517: The JSON

structure

Table 518: The JSON

structure

Table 519: The JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 384

WEATHER FILES

The weather behaviour stores its text strings (to be spoken) in

/anki/data/assets/cozmo_resources/ config/engine/behaviorComponent/weather/conditi

on_to_tts.json

This path is hardcoded into libcozmo_engine. The JSON file is an array of structures. Each

structure has the following fields:54

Field Type Description & Notes

Condition string e.g. “Cloudy”, “Cold”

Say string The key used in the BehaviorStrings.json file to look up the

localized test. (In previous versions, this was the text to say, in

English.)

111.3. CUSTOMIZATION

Vector’s voice files are from Acapela. Acapela sells language packs for book readers, but the

format appears different and likely very difficult to modify or create.

Cozmo’s employs a different English voice (in the Cozmo APK). This likely could be extracted

and used on Vector. (In turn, Vectors voice could probably be used with Cozmo.)

Customization of the Localization TTS would give Vector a bit more personality.

112. COMMANDS

The HTTPS SDK API (Chapter 15) includes commands that affect the sounds

 Audio stream commands (see Chapter 15 section 50.6 External Audio Stream Playback)

 Text to speech (see Chapter 15 section 50.8 Say Text) An external application can direct

Vector to speak using the Say Text command. The response(s) provide status of where

Vector is in the speaking process.

 Vector’s volume can be set as a setting using the UpdateSettings command (see Chapter 15

section 66.2 Update Settings) and the RobotSettingsConfig structure (see chapter 31), or

using the Master Volume command (see Chapter 15 section 50.7 Master Volume). Note:

the volume levels using settings doesn’t fully match those in the master volume command.

Note: can also trigger animations which play sounds effects as well.

113. REFERENCES AND RESOURCES

AudioKinetic , Wwise Fundamentals (2015)

https://www.audiokinetic.com/download/documents/Wwise_Fundamentals.pdf

AudioKinetic, Wwise User’s Guide

https://www.audiokinetic.com/files/?get=2015.1.9_5624/Wwise_UserGuide_en.pdf

AudioKinetic, The Wwise Project Adventure

https://www.audiokinetic.com/download/documents/WwiseProjectAdventure_en.pdf

54 That this file (and many others) is a simple 1:1 transform lends the suspicion that the localization process is needlessly complex.

Table 520: The JSON

structure

https://www.audiokinetic.com/download/documents/Wwise_Fundamentals.pdf
https://www.audiokinetic.com/files/?get=2015.1.9_5624/Wwise_UserGuide_en.pdf
https://www.audiokinetic.com/download/documents/WwiseProjectAdventure_en.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 385

AudioKinetic, Get Started Using Wwise

https://www.audiokinetic.com/download/documents/Wwise_GetStartedGuide.pdf

AudioKinetic, Wwise 101

https://www.audiokinetic.com/download/lessons/wwise101_en.pdf

AudioKinetic, Wwise Fundamentals, Understanding Events

https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=under

standing_events_understanding_events

Cheveigne, Alain de. (2002). “YIN, a fundamental frequency estimator for speech and music,”

Journal of the Acoustical Society of America. Vol 111(4), pp 1917-30.

http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf

Coull, Ashley, Sound for Robots: An Interview with Sr. Sound Designer Ben Gabaldon, 2016 Nov

15, Designing Sound

http://designingsound.org/2016/11/15/sound-for-robots-an-interview-with-sr-sound-designer-

ben-gabaldon/

Krotos, Dehumaniser Live

https://www.krotosaudio.com/dehumaniser-live/

https://www.krotosaudio.com/products/dehumaniser2/

https://s3-us-west-2.amazonaws.com/dehumaniser/Manuals/Dehumaniser+2+Manual.pdf

Krotos, Dehumaniser Live, Integration With Wwise, 2017

https://s3-us-west-

2.amazonaws.com/dehumaniser/Manuals/Dehumaniser+Live+for+Wwise+Manual.pdf

Louis, Patrick. Making Sense of the Audio Stack On Unix,2021 Feb 7

https://venam.nixers.net/blog/unix/2021/02/07/audio-stack.html

McLeod, Philip and Wyvill, G., “A Smarter Way to Find Pitch” (2003), Proc. International

Computer Music Conference, Barcelona, Spain, September 5-9, 2005, pp 138-141.

http://miracle.otago.ac.nz/tartini/papers.html

Sweet, Michael, Creating Music for Robots: Interview with the Composing Team for Cozmo,

Design Music Now, 2016 Dec 12

https://www.designingmusicnow.com/2016/12/12/creating-music-robots-interview-

composing-team-cozmo/

Wikipedia, Cepstrum

https://en.m.wikipedia.org/wiki/Cepstrum

Wikipedia, Fowler-Noll-Vo hash function

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Wikipedia, Mel-Frequency Cepstrum

https://en.m.wikipedia.org/wiki/Mel-frequency_cepstrum

Wikipedia, Mel scale

https://en.wikipedia.org/wiki/Mel_scale

Wikipedia, Pitch detection algorithms

https://en.wikipedia.org/wiki/Pitch_detection_algorithm

Wolford, Jason; Ben Gabaldon, Jordan Rivas, Brian Min Condition-Based Robots Audio

Techniques, Anki , USPTO Pub.No: US2019/0308327A1, 2018 Apr 6

Xentax, Wwise SoundBank (*.bnk), 2012 Dec 6

http://wiki.xentax.com/index.php/Wwise_SoundBank_(*.bnk)

This site provides a wealth of information on the format of the Sound Bank files.

Unfortunately not all sections of the file have been documented, and there are sections in

Vector’s Sound Bank files that were not known when this page was written

Some example code for YIN and McLeod pitch tracking

https://github.com/ashokfernandez/Yin-Pitch-Tracking

https://github.com/adamski/pitch_detector/blob/master/source/PitchMPM.h

https://github.com/sevagh/pitch-detection/blob/master/src/mpm.cpp

https://www.audiokinetic.com/download/documents/Wwise_GetStartedGuide.pdf
https://www.audiokinetic.com/download/lessons/wwise101_en.pdf
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_events_understanding_events
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_events_understanding_events
http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf
http://designingsound.org/2016/11/15/sound-for-robots-an-interview-with-sr-sound-designer-ben-gabaldon/
http://designingsound.org/2016/11/15/sound-for-robots-an-interview-with-sr-sound-designer-ben-gabaldon/
https://www.krotosaudio.com/dehumaniser-live/
https://www.krotosaudio.com/products/dehumaniser2/
https://s3-us-west-2.amazonaws.com/dehumaniser/Manuals/Dehumaniser+2+Manual.pdf
https://s3-us-west-2.amazonaws.com/dehumaniser/Manuals/Dehumaniser+Live+for+Wwise+Manual.pdf
https://s3-us-west-2.amazonaws.com/dehumaniser/Manuals/Dehumaniser+Live+for+Wwise+Manual.pdf
https://venam.nixers.net/blog/unix/2021/02/07/audio-stack.html
http://miracle.otago.ac.nz/tartini/papers.html
https://www.designingmusicnow.com/2016/12/12/creating-music-robots-interview-composing-team-cozmo/
https://www.designingmusicnow.com/2016/12/12/creating-music-robots-interview-composing-team-cozmo/
https://en.m.wikipedia.org/wiki/Cepstrum
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.m.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Pitch_detection_algorithm
http://wiki.xentax.com/index.php/Wwise_SoundBank_(*.bnk)
https://github.com/ashokfernandez/Yin-Pitch-Tracking
https://github.com/adamski/pitch_detector/blob/master/source/PitchMPM.h
https://github.com/sevagh/pitch-detection/blob/master/src/mpm.cpp

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 386

CHAPTER 26

Motion Control

This chapter describes the motion control subsystem:

 The control of the motors

 Performing head and lift movements

 Moving along paths in a smooth and controlled fashion

Note: the motion control is implemented in vic-robot (except where stated otherwise, of course)

114. MOTION CONTROL

The motion control is designed to take a path of movements from the path planner or the animation

systems. The path consists of arc, line, and turn (in place) movement commands. These can be

coordinated with the head and lift, by the animation system.

Note: the animation system is described in chapter 22

Head

Path

· Turn in place

· Lines

· Arcs

Lift

LiftController
Head

Controller

Wheel

Controller

Steering

Controller

Path

Follower

Mobile App

& Python

SDK

applications

Vic-GatewayVic-Anim

Action

Controller

The individual motors have controllers to calibrate, move, prevent motor burnout, and perform any

special movements.

114.1. PATHS

The path planner thinks of the world and robot coordinates within it in terms of x,y and θ (theta)

coordinates. The θ being the direction angle that Vector is facing at the time. It builds a list of

Figure 116: Motion

controller

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 387

straight line segments, arcs, and point turns. Each of the motors is independently driven and

controlled, with the steering controller coordinating the driving actions.

The PathFollower carries out the driving plan. It receives a list of driving segments. Each segment

has an associated speed, acceleration, and deceleration to drive at. The three kinds of segments

are:

 Drive in a straight line

 Drive arcs

 Turn in place

When it receives the list, it checks that certain rules are followed.

 The list is not too long

 That each segment type is known

 That the path is continuous: the end-point of one segment must be the same as the starting

point of the next segment.

114.2. FEEDBACK

The motion controller may take position and orientation feedback from

 The linear speed can be estimated from the motors shaft rotation speed (and some

estimated tread slip), merged with IMU information

 The speed that the robot is rotating can be measured by the IMU and the vision system.

 The navigation and localization subsystem, which employs a sophisticated Kalman filter

on all of the above position.

114.3. MOTOR CONTROL

Vector’s small, light frame and powerful (for their size) motors allow him to make quick actions

representing his emotions and little tantrums, as well as drive about smoothly. A typical speed and

position controller for the brushed DC motors is a set of PID control loops. (Although the “d” –

derivative – term is often small or unneeded.)

Position

Motor driver

Speed

PID

Controller

Encoder

Motor

Speed filter

Position

PID

Controller
Position & Speed

or Speed

Limiter

Body-Board controllerHead-Board controller

The motor control loops are implemented in the head-board. They are implemented using floating

point (rather than the fixed point55 that the body-board’s M0 microcontroller would require), and

55 Although both approaches work, fixed point (using integers and scaling factors rather than floating point) takes a bit more effort to

tune, as small but important parts of the feedback signals are dropped… this can introduce effects like jerkiness, stutter or motor noise
from.

Figure 117: A typical

motor control loops, as

they might appear in

Vector

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 388

are updated 200 times per second. The body-board is responsible for driving the motors and

sampling the encoder. It is also responsible for protecting the motors in case of a stall.

The lift and head motors are position-controlled. The motors can be commanded to travel to an

encoder position at a speed (given in radians/sec). The position – the cumulative number of

radians that that the shaft has turned – can be computed by counting the encoder events, with the

expected direction that the motor has turned.

The speed of rotation is also computed from the encoder count. One typical approach is to

regularly take a derivative of the position (say once every millisecond), and filter it. Since the

encoder is discrete, at slow speeds its update rate will produce false measures of shaft speed.

114.4. BURN OUT PROTECTION

The body-board is responsible for protecting the motors. It monitors the speed of the motors. If a

stall is detected, it limits the current to the motor (by limiting the duty-cycle). The motor is still

driven, but at such a low power that burn out is not a risk. This lets the head and lift hold position.

In case the hand or other obstruction is removed, the motor can sense the change (the encoder will

show that they are able to turn again) and resume.

Luckily, those motors can't overheat instantaneously – it takes at least 15 seconds of being

stalled at full power before you risk permanent damage. The firmware in the body board

watches the encoders on all 4 motors, and turns down the power on stalled channels. It

never turns the power down to 0, since it doesn't have to. All 4 motors can push

continuously (gently) without stalling.

So if you drive a motor toward the limit but someone is pulling on it the other way, it

might push hard at first, then quickly “relax” to a voltage that's safe for continuous use, but

never stop pushing just in case you let go.

114.5. NO PINCHING FINGERS!

The motors can also be “unlocked” – allowed to be spun by external forces. This allows a person

to raise and lower the lift, as well as raise and lower the head. Both of these are used as inputs to

enter diagnostic modes.

The software control loops can also detect when a person is playing with Vectors lift (or head or

tracks), and then unlock the motors.

the PID controller violently fights your attempt to pull the lift, smacking your fingers and

oscillating and otherwise causing trouble. The PID controller is pretty feisty, because it

has to operate across a huge range of forces – between flipping or lifting the robot's entire

weight and delicately setting down or lifting cubes without flinging them.

114.6. GETTING THE LIFT AND HEAD POSITIONS JUST RIGHT

The head and lift motors need to have their positions calibrated.

Both head and lift angle must be known exactly, since we need to know exactly where the

tongs (on the lift) are relative to what the camera sees. Otherwise we couldn't engage (lift)

and disengage (pull out) the block.

At startup Vector performs a calibration procedure, “which is just an animation that pushes the

head/lift to [their] hard stop.” Both the lift and head have hard stops at their most downward

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 389

position, which serves a well-defined starting point. When these motors reach the end of travel,

the measured speed will fall below a threshold, and the software knows to zero estimated position.

Vector’s software has two backups in case the position is wrong. This can happen if the calibration

was wrong – something, perhaps a block or impatient human companion – prevented the head or

lift from moving further. Or if someone moved his lifts or head (since the position encoder is single

step, Vector won’t be able to tell which direction they were moved).

1. The body-board firmware has motor burnout prevent features. This quickly drops the

power applied to the motor if there is a stall.

2. If a motor is stalled unexpectedly or the motor isn’t stopped (by the hard stop) within 5%

of where it should, Vector schedules another calibration procedure. (This is handled by the

ReactToUncalibratedHeadAndLift behavior.)

114.7. DIFFERENTIAL DRIVE KINEMATICS

Under ideal circumstances, these motions are straight-forward to accomplish:

 To turn in place, the treads turn at the same rate, but in opposite directions. The speed of

the turn is proportional to the speed of treads

 To drive straight, both treads turn at the same speed. The speed of motion is proportional

to the speed of the treads.

 To drive in an arc is done by driving the treads at two different speeds.

To drive in an arc, the left and right treads are driven speeds:

 widthradiusv

widthradiusv

right

left

2
1

2
1

Where

 width is Vector’s body width

 ω is the angular velocity, i.e. speed to drive around the arc

 radius is the distance from the center of the arc to the center of Vector’s body:

radius

114.7.1 Slip

In practice, Vector’s actual movement won’t quite match what he attempted to do. Mainly this will

come from how the treads slip a bit (especially while trying to push an object), and some variation

in how driving the motors maps to actual motion.

Equation 3: Tread

speeds based on arc

radius

Figure 118: Radius of

arc measurement

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 390

115. MOTION CONTROL COMMANDS

The HTTPS SDK API (Chapter 15) includes commands to control the motors, and to initiate

driving actions. The lower level commands, below the action processor are:

 Drive Wheels

 Move Head

 Move Lift

 Stop All Motors

The higher level commands, part of the action system are:

 Drive Straight

 Stop All Motors

 Turn In Place

 Set Head Angle

 Set Lift Height

 Go to Pose

 Turn Towards face

 Go To Object

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 391

CHAPTER 27

Animation File Format

The binary animation files are the most significant of Vector’s animation files. The file format

provides for coordinating the display, motion, and sound responses.

 Animation file format overview

 Structures in the file

116. ANIMATION BINARY FILE FORMAT

The schema and format of the animation binary file is given as a flatbuffer specification. This

specification is located at:

/anki/data/assets/cozmo_resources/config/ cozmo_anim.fbs

Note: this file is not read by any program in Vector. A compatible parser is compiled in.

116.1. OVERVIEW OF THE FILE FORMAT

The animation file contains one or more named animation “clips.” Each clip has one or more

tracks that represent the scripted motions (and lights & sounds) that Vector should perform. There

are tracks for moving Vector’s head, lift, driving, modifying his facial expressions, displaying

images on the LCD, audio effects, and controlling the backpack lights.

Backpack

Lights

Motion Control

· Head angle

· Lift height

· Turn in place

· Driving

Events

Key frames

Sprite

sequences

Sound

files &

parametric

sounds

Procedural

Face Controller

· Face tilt

· Eye controls

Named

Animation

clips

Named

Animation

clips

Named

Animation

clips

Name

Each of the tracks within the clip is composed of key frames (with settings for each of the relevant

tracks) that are triggered at different points in time.

116.2. RELATIONSHIP WITH COZMO

Vector’s file format for animations is derived from the file format used with Cozmo. This presents

the possibility of adapting Cozmo’s animation files to Vector, and vice-versa. The code generated

Figure 119: The

animation file structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 392

by Google’s flatbuffer tools ignores extra fields, and assigns default values to missing ones. This

makes it possible to use a Cozmo animation file with Vector – accepting that some areas, such as

the sounds, won’t link up fully. The key differences between Cozmo and Vector’s formats are that

Vector includes audio tracks, plus some minor extra fields, and fewer backlight LEDs.

The PyCozmo project has the (experimental) ability extract Cozmo’s animations, and may be

useful for this transcoding and adjustment to Vector’s aesthetic.

117. STRUCTURES

The animation file starts with an AnimClips structure. Unless specified otherwise, each structure is

the same as in Cozmo.

By default, all fields are optional unless specified otherwise.

117.1. ANIMCLIPS

The AnimClips structure is the “root” type for the file. It provides one or more animation “clips” in

the file. Each clip has one or more tracks. The structure following fields:

Field Type Description

clips AnimClip[] An array of animation clips

117.2. ANIMCLIP

The AnimClip is a named animation that can be played. This structure has the following fields:

Field Type Description

Name string The name of the animation clip; this is also called the

animation trigger name.

keyframes Keyframes The key frames for each of the tracks for this animation clip

117.3. AUDIOEVENTGROUP

The AudioEventGroup structure is used to randomly select an audio event (and volume), and send it

to the audio subsystem. See Chapter 25, section 110.2 Audio Pipeline for a description of audio

events. This structure has the following fields:

Field Type Units Description

eventIds uint[] The audio event IDs, weighted by a probability.

volumes float[] The volume to play the selected audio at.

probabilities float[] (0..1] The probability weight that a given event will be selected.

This structure is new to Vector.

Table 521: AnimClips

structure

Table 522: AnimClip

structure

Table 523:

AudioEventGroup

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 393

117.4. AUDIOPARAMETER

The AudioParameter structure is used to set one of the sound parameters in the AudioKinetic

Wwise subsystem. See Chapter 25, section 110.2 Audio Pipeline for a description of audio

parameters. This structure has the following fields:

Field Type Units Description

parameterId uint The identifier of the parameter to set. Default: 0

value float The value to set the parameter to. Default: 0

time_ms uint ms The time at which the parameter should be set. Default: 0

curveType ubyte default: 0

This structure is new to Vector.

117.5. AUDIOSTATE

The AudioState structure is used to put the audio system into a particular state. See Chapter 25,

section 110.2 Audio Pipeline for a description of audio state. This structure has the following

fields:

Field Type Description

stateGroupId uint The state group to modify. Default: 0

stateId uint The new state to put the group into. Default: 0

This structure is new to Vector.

117.6. AUDIOSWITCH

The AudioSwitch structure is used to put an audio switch into a particular setting. See Chapter 25,

section 110.2 Audio Pipeline for a description of audio switches. This structure has the following

fields:

Field Type Description

switchGroupId uint The switch to modify. Default: 0

stateId uint The new state to put the switch into. Default: 0

This structure is new to Vector.

Table 524:

AudioParameter

structure

Table 525: AudioState

structure

Table 526: AudioSwitch

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 394

117.7. BACKPACKLIGHTS

The BackpackLights structure is used to animate the LEDs on Vector’s back. This structure has the

following fields:

Field Type Units Description

triggerTime_ms uint ms The time at which the backlights animation should begin.

durationTime_ms uint ms The duration before a transition to the next backlight setting

may begin. During this time the lights should be

illuminated with these colors; after this the colors may

transition from these to the next colors.

Front float[4] RGBA Each color is represented as 4 floats (red, green, blue, and

alpha), in the range 0..1. Alpha is always 0 (the value is

ignored).

Middle float[4] RGBA Each color is represented as 4 floats (red, green, blue, and

alpha), in the range 0..1. Alpha is always 0 (the value is

ignored).

Back float[4] RGBA Each color is represented as 4 floats (red, green, blue, and

alpha), in the range 0..1. Alpha is always 0 (the value is

ignored).

see also: Chapter 23 section 27 Backpack lights control for a similar JSON structure.

Note: Cozmo’s animation structure includes a left and right LED animation.

On nextTransition

durationTime_ms

triggerTime_ms triggerTime_ms

The best interpretation is that, once a frame is triggered, the LED is set to the given color. The

LED won’t be changed for at least durationTime_ms. Once that time has expired, the LED color is

ramped linearly to the color of the next frame.

117.8. BODYMOTION

The BodyMotion structure is used to specify driving motions for Vector. This structure has the

following fields:

Field Type Units Description

triggerTime_ms uint ms The time at which the motion should begin

durationTime_ms uint ms The duration that the robot should drive.

radius_mm string mm

speed short The speed at which the robot should move.

Note: it is possible that the driving should ramp to the speed in the given duration. This is a TBD.

Table 527:

BackpackLights structure

Figure 120: Time

course of the backlight

colors

Table 528: BodyMotion

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 395

117.9. EVENT

The Event structure is used to pause the animation at the given time code until the event is received

or cancelled. When the event is received, the animation resumes the given time code. This

structure has the following fields:

Field Type Units Description

triggerTime_ms uint ms When the event occurs it triggers animation to begin at this

time.(?) Or, at this time, emit the event?

event_id string The name of the event.

The event names include

 CHANGE_EYE_COLOR

 CUBE_LIGHT_TOGGLE

 DANCE_BEAT_SYNC

 DEAL_CARDS_BEGIN

 FLIP_DOWN_BEGIN

 LISTENING_BEGIN

 STRAIGHT

 SWIPE_CARDS_BEGIN

 TAPPED_BLOCK

 TOGGLE_NUMBERS_DISPLAY

 TURN_IN_PLACE

Note: unless otherwise specified the animations are not allowed to have event key frames – the

behavior wouldn’t expect to send the events to them.

117.10. FACEANIMATION

The FaceAnimation structure is used to specify the JSON file to animation Vector’s display. This

structure has the following fields:

Field Type Units Description

triggerTime_ms uint ms The time at which the motion is triggered.

animName string The time at the face animation should begin. See Chapter

24 section 105.6 Sprite Sequences. Required

scanlineOpacity float This is new for Vector. Default: 1.0

The scanlineOpacity is new to support Vector’s display. With Cozmo “the screen is displayed

interlaced, with only every other line displayed This alternates every time the image is changed

(no longer than 30 seconds) to prevent screen burn-in. Therefore to ensure the image looks correct

on either scan-line offset we use half the vertical resolution”

Table 529: Event

structure

Table 530:

FaceAnimation structure

Cozmo SDK (Anki)

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 396

117.11. HEADANGLE

The HeadAngle structure is used to specify how to move Vector’s head. The head should reach the

target angle in the duration given, ramping up the movement speed smoothly (with some

variability) until it reaches that that point. This structure has the following fields:

Field Type Units Description

triggerTime_ms uint ms The time at which the head motion should begin.

durationTime_ms uint ms How long the head motion should last.

angle_deg ubyte deg The angle to move the head to. This should be in the range -

22.0° to 45.0°.

angleVariability_deg ubyte deg The amount of randomness allowed for the target head

angle. Default: 0

117.12. LIFTHEIGHT

The LiftHeight structure is used to specify how to move Vector’s lift. The lift should reach the

target height in the duration given, ramping up the movement speed smoothly (with some

variability) until it reaches that. This structure has the following fields:

Field Type Units Description

triggerTime_ms uint ms The time at which the lift should begin motion.

durationTime_ms uint ms How long the lift motion should last.

height_mm ubyte mm The height to lift the arms to.

heightVariability_mm ubyte mm The amount of randomness allowed for the target height.

default: 0

Table 531: HeadAngle

structure

Table 532: LiftHeight

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 397

117.13. KEYFRAMES

The Keyframes structure provides separate time-coded key frames for each of the possible tracks in

the animation. The tracks are optional. There tracks may have different numbers of key frames.

The key frames do not need to start at the same time(s).

The KeyFrames structure the following fields:

Field Type Description

LiftHeightKeyFrame LiftHeight[] A series of key frames describing when and how the lift

should move.

ProceduralFaceKeyFrame ProceduralFace[] A series of key frames describing when and how the

eyes should move.

HeadAngleKeyFrame HeadAngle[] A series of key frames describing when and how the

head should move.

RobotAudioKeyFrame RobotAudio[] A series of key frames describing when and how audio

should be played.

BackpackLightsKeyFrame BackpackLights[] A series of key frames describing when and how the

backpack lights should be illuminated.

FaceAnimationKeyFrame FaceAnimation[] A series of key frames describing when and how the

face should move.

EventKeyFrame Event[] Note: many behaviors do not support event key frames;

those that do expect a specific event, and number of

event keyframes.

BodyMotionKeyFrame BodyMotion[] A series of keyframes to drive and turn the body.

RecordHeadingKeyFrame RecordHeading[] A series of key frames to record the current heading of

the robot so that the animation can return to them later.

TurnToRecordedHeadingKe

yFrame
TurnToRecordedHeading[] A series of key frames use to return the robot to a

previously saved heading after a movement.

SpriteBoxKeyFrame SpriteBox[] A series of key frames for the visual sprite box

animation. New in version 1.7.

Note: Each of the structures has a time code. Within each array, the time code(s) must be in

ascending order; no two entries in the same array can share the same time code.

Table 533: KeyFrames

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 398

117.14. PROCEDURALFACE

The ProceduralFace structure is used squash, stretch and shake Vectors face in cartoonish ways. It

does not affect where his eyes are focused. See Chapter 24 section 106 Procedural face for a

description of Vectors face, and how these parameters influence it. The structure has the following

fields:

Field Type Units Description

triggerTime_ms uint ms The time at which the motion is triggered.

faceAngle float default: 0

faceCenterX float default: 0

faceCenterY float default: 0

faceScaleX float default: 1.0

faceScaleY float default: 1.0

leftEye float[] If present, these describe modifications to the eye – lid,

cheeks, and shape of the eye. They have the structure given

below.

rightEye float[] If present, these describe modifications to the eye – lid,

cheeks, and shape of the eye. They have the structure given

below.

scanlineOpacity float This is new for Vector. default: 1.0

The arrays of floats for each eye in animations for Cozmo have been deciphered, and are

presumed to be the same for Vector. They are presumed to be the same for Vector:

Field Default Description

lower_inner_radius_x 0.5

lower_inner_radius_y 0.5

lower_outer_radius_x 0.5

lower_outer_radius_y 0.5

upper_inner_radius_x 0.5

upper_inner_radius_y 0.5

upper_outer_radius_x 0.5

upper_outer_radius_y 0.5

upper_lid_y 0.0 The vertical position of the upper eye lid (which occludes

the eye).

upper_lid_angle 0.0 The angle of the upper eye lid.

upper_lid_bend 0.0 The bend to the upper eye lid.

lower_lid_y 0.0 The vertical position of the lower eye lid / cheek (which

occludes the eye).

lower_lid_angle 0.0 The angle of the lower eye lid / cheek.

lower_lid_bend 0.0 The bend to the lower eye lid / cheek.

Table 534:

ProceduralFace

structure

PyCozmo

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 399

117.15. RECORDHEADING

The RecordHeading structure has the following fields:

Field Type Units Description

triggerTime_ms uint ms The time when the robot should record his heading?

117.16. ROBOTAUDIO

The RobotAudio structure is used to interact with the audio engine. It is new to Vector; a very

different structure with a similar name was used with Cozmo. This structure has the following

fields:

Field Type Units Description

triggerTime_ms uint ms The time the audio events should be sent, and the

parameters should be set.

eventGroups AudioEventGroup[] The set of possible audio events to send.

state AudioState[] The settings to put different audio states into.

switches AudioSwitch[] The configuration of the audio context, setting the audio

“switches” to use the right sounds and effects for the

circumstances.

parameters AudioParameter[] The set of changes to make to the audio playback

parameters.

Table 535:

RecordHeading structure

Table 536: RobotAudio

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 400

117.17. SPRITEBOX

The SpriteBox structure defines a rectangular region on the display to draw an image from a file.

This structure is new to Vector, introduced in version 1.7 of the software. This structure has the

following fields:

Field Type Units Description

triggerTime_ms uint ms The time when Vector should begin to use this sprite box.

spriteBoxName string The name of the sprite box. (This name is also defined in

vic-anim and libcozmo_engine.) The animation engine may

use this to select the procedure(s) in charge managing the

layer and sprite boxes. If an image map is available for this

animation, the sprite sequence it describes will be displayed

in this rectangle. Required

layer string The name of the layer. (This name is also defined in vic-

anim and libcozmo_engine) The animation engine may use

this to select the procedure(s) in charge managing the layer

and sprite boxes. Required

assetName string This can be the name of a sprite sequence, independent

sprite, or “clear_sprite_box” for an empty image. Required

renderMethod string “CustomHue” if the PNG images should be converted from

gray scale to the colour using the current eye colour setting.

“RGBA” if the image should be drawn as is.

Required

spriteSeqEndType string Required

alpha float % The opacity of the image pixels. Default is 100.0

xPos int pixels The x coordinate of the upper left hand corner of the sprite

box. The x coordinate can be outside of the display area;

only the portion of the image within the display area

(0..183) will be shown. This allows an image to slide in.

Default: 0

yPos int pixels The y coordinate of the upper left hand corner of the sprite

box. The y coordinate can be outside of the display area;

only the portion of the image within the display area (0..95)

will be shown. This allows an image to slide in. Default: 0

width uint pixels The width of the sprite box. This should be less than or

equal to 96.

height uint pixels The height of the sprite box. The width of the sprite box.

This should be less than or equal to 184.

The box coordinates and area should smoothly move and change size to the reach the target

position and size by the given trigger time.

See also Chapter 24 section 105.3 Layout file for another method of defining a sprite box.

Table 537: SpriteBox

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 401

117.18. TURNTORECORDEDHEADING

The TurnToRecordedHeading is used to specify how Vector should turn to the previously recorded

heading. The robot reach the target heading in the duration given, ramping up the movement speed

smoothly until it reaches that position (within some tolerance). This structure has the following

fields:

Field Type Units Description

triggerTime_ms uint ms The time when Vector should begin to turn to the recorded

heading.

durationTime_ms uint ms The amount of time to move to the recorded heading.

offset_deg short deg default: 0

speed_degPerSec short deg/sec The speed that Vector should turn at.

accel_degPerSec2 short deg/sec2 How fast Vector should accelerate when turning. default:

1000

decel_degPerSec2 short deg/sec2 How fast Vector should decelerate when turning. default:

1000

tolerance_deg ushort deg This specifies how close the actual heading is to the target

before considering the movement complete. Default: 2

numHalfRevs ushort default: 0

useShortestDir bool default: false

Table 538:

TurnToRecordedHeadin

g structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 402

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 403

PART VI

High Level AI

This part describes items that are Vector’s behaviour function.

 BEHAVIOR. A look at Vectors behaviors, and emotions

 EMOTION MODEL. A look at how Vector emulates emotions

 BEHAVIOR TREES. A look at how the behaviors are selected and their settings

drawing by Steph Dere

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 404

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 405

CHAPTER 28

Behavior

This chapter describes Vector’s action, behaviour, and emotion system:

 Actions and behaviour queues

 The emotion-behaviour system, and stimulation

118. OVERVIEW

How does Vector get excited from praise, and then decide to go exploring and play? How does he

decide it’s time to take a nap?

Vector’s high-level AI – his emotions, sense of the environment and himself, and behaviors – are a

key part of how he creates a compelling character. He has an emotional state that is seen in his

affect – his facial expression, head and arm posture – how he behaves and responds, as well as the

actions he initiates.

119. ACTIONS AND BEHAVIORS

Actions and “behaviors represent a complex task which requires Vector's internal logic to

determine how long it will take. This may include combinations of animation, path planning or

other functionality.”

119.1. ACTIONS AND THE ACTION QUEUES

Animations can be submitted with which tracks of the animation to disable. This allows multiple

actions can be run at the same time. If the action requires a track that is already in use, the action

isn’t run, and returns an error. Actions can automatically retry if a problem was encountered.

Actions can have associated “tag” used to refer to that running instance. The client can cancel the

action.

119.2. BEHAVIORS

Unlike actions, only one behavior can be active at a time. The others are waiting in a stack. A

behavior is submitted (to be run) with a priority; if its priority is higher priority the current one, it is

run instead. The old behavior is pushed down in the stack. When a behavior completes, the next

high priority one is resumed.

119.2.1 Priority Levels

The behaviors requested by Vector’s internal AI are submitted to the stack with a priority based on

that behavior. If the SDK has requested control, the behaviors it requests are submitted with the

priority level set when control was requested. As long as the SDK is connected and has control,

behaviors submitted at a lower priority will not activate, even if the SDK is not currently running a

behavior. The SDK can lose control if a higher priority is submitted (e.g. “like returning to the

charger due to low battery”), gives up control or closes the connection.

Anki SDK

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 406

The priority levels are organized with lower numbers being higher priority (and larger numbers

being lower priority). The built in behaviors have different associate priority levels:

Mandatory Physical Reactions

· Falling: Tuck and roll

· Cliff detection & backing

away

· Low-battery handling &

finding changer

· Avoid slope

· Dark mode detection

Idle behaviors

· Exploring

· Trigger-word detection

30: RESERVE_CONTROL

20: SDK DEFAULT

10: OVERIDE_BEHAVIORS

The behaviors are grouped, from the highest priority to the least, into the following categories:

 MandatoryPhysicalReactions

 TriggerWordDetected

 SDKDefault (the behaviors submitted via the SDK if the default priority was used)

 SingletonWallTimeCoordinator

 TimerUtilityCoordinator

 WeatherResponses

 TakeAPhotoCoordinator

 ReactToRobotShaken

 ReactToTouchPetting

 BasicVoiceCommands (“simple voice commands that we want to ignore obstacles”)

 ReactToObstacle

 InterruptingVoiceReactions

 ChangeEyeColor

 ReactToUnclaimedIntent

 HeldInPalmDispatcher

 WhileInAirDispatcher

 ReactToPutDown

 ReactToDarkness

 GreetAfterLongTime

 ReactToUncalibratedHeadAndLift

 DanceToTheBeatCoordinator

 StayOnChargerUntilCharged

 ReactToSoundAwake

 ConfirmHabitat

Figure 121: The

behaviour priorities

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 407

 HighLevelAI

119.2.2 Other properties of a behavior

Besides a priority, a behavior has other properties:

 They have a string identifier

 A given behavior is an instance of a class

 It can have conditions (usually on the current executing environment) that must be met

before the behavior can be activated, and other conditions that they must be met to keep

running.

 A behavior can have a cool down period associated with it – a period of time after the end

of its last use before it can be run again.

 A behavior can trigger animations or actions when it is activated (referred to as the “get in”

animations), and when it stops running (the “get out” animations)

 A behavior can submit other behaviors to be run

119.3. PATH PLANNING AND OTHER SMART THINGS TO SUPPORT US

For some commands, “Vector uses path planning, which refers to the problem of navigating the

robot from point A to B without collisions. Vector loads known obstacles from his map, creates a

path to navigate around those objects, [and] then starts following the path. If a new obstacle is

found while following the path, a new plan may be created.”

“For commands such as go_to_pose, drive_on_charger and dock_with_cube, Vector uses

path planning, which refers to the problem of navigating the robot from point A to B

without collisions. Vector loads known obstacles from his map, creates a path to navigate

around those objects, and then starts following the path. If a new obstacle is found while

following the path, a new plan may be created.”

119.4. DECIDING ON THE BEHAVIOR TO USE

A behavior can be initiated in two different ways. The libcozmo engine can on startup or based on

internal state or events, choose a behavior to submit to run. The other is that the behavior tree can

decide which behavior should be submitted to run:

Vector’s behavior follows a hierarchy. “The highest level is what kind of things should

the robot be doing right now – Should he be quiet? Should he be engaging? Should he be

sleeping? Is his battery super-low, and he needs to recharge?” Different behaviors flow

from these high-level states, in response to events and the states of his Emotion Engine.

The behavior tree works by allowing the currently executing behavior to submit other behaviors

behaviors to run; but those behaviors can have sophisticated rules (and priorities) that govern

whether can run, or should stop running. The details of the behavior tree will be examined in the

next chapter.

119.5. INITIATING THE BEHAVIOR

In both cases, the identifier (a text string) of the behavior is passed to the behavior engine, along

with a priority to run at. The engine checks to see if this is a lower priority (higher number) than

the current priority level. If so, the behavior is rejected. . The engine also checks that the

Anki SDK

Captain 2018 quoting

Brad Neuman

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 408

behavior is not already on the stack; if so, the behavior is rejected. Otherwise, the behavior id is

used to look up (in a table) the relevant behavior node:

BehaviorID Node

Behavior

Node

Behavior ID

A working instance of the behavior is created from the behavior node – the node specifies the

class, and its configuration, but the state is not preserved between uses. Then:

1. The behavior is given a preliminary check: can the behavior run?

a. Is the behavior still in a cool down period? If so, the behavior is rejected

b. A behavior node can have optional conditions attached to it that say whether or not it

can run. Have these conditions been met? If not, the behavior is rejected

2. Next, the active behavior is suspended

3. The stats for behavior activation are updated

4. The new behavior is pushed on to the stack

5. The behaviors associated AI Feature is tracked, to aid in debugging and statistics of usage

6. If the behavior has an emotion event (emotionEventOnActivated) associated, it is posted to

the Mood Manager to update Vector’s emotional state.

7. The behaviors “get in” activities are carried out – those animations and other actions that

are done when the behavior is activated.

119.6. MANAGING THE ACTIVE AND PAUSED BEHAVIORS

The behavior engine regularly checks the behaviors on the stack. It checks that the top most

behavior can still run; if not, the behavior is cancelled: its “get out” animation is started, and the

behavior is removed from the stack. Perhaps all behaviors on the stack are checked to see if they

can still run, and (if not) they and their children are removed from the stack; with the suspended

behaviors not running their “get out” animation.

Then the top most behavior carries out any updates to its activities and state. The behavior may

also choose to cancel itself, or to initiate another behavior.

If a behavior exits – or is cancelled – the next one on the stack is resumed.

Figure 122: Mapping a

behavior identifier to the

behavior tree node

starting a behavior

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 409

119.7. BEHAVIOR CONTROLLERS

Several behaviors have multiple steps (and behavior classes) used in the interaction. These can be

coordinated with a shared entity called a controller. The controller brings together the information

from the cloud’s intent response, as well as its internal state and logic. These are used for the

weather, timers & time, and games like blackjack and cube spinner.

Intent

Populate

string

Backpack

Animation

Behavior

node(s)

Condition

Text To

Speech

Cube

Animation

Prefs

Animation

Groups &

Animation

Composite

Image

Remap

parameters

Behavior

Controller

Localizable

strings

Response key

Key Text

Localization

While each controller is unique, in general a controller can:

 Construct the text to be spoken, from templates and parameters. The parameters are from

the cloud and within the controller.

 Select cube and backpack light animations, as well as other animations to play. Some of

these animations are called out in the behavior node.

 Update the sprites to use in the composite image sprite boxes

 Manage internal timers and state

119.8. AUDIO EVENTS

Many of the behavior JSON files emit audio events; the JSON field names typically look like:

 postAudioEvent

 earConAudioEventNeutral

 earConAudioEventSuccess

 earConAudioEventBegin

Figure 123: The

behavior controller links

together multiple intents,

and responses

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 410

CHAPTER 29

Emotion Model

This chapter describes Vector’s action, behaviour, and emotion system:

 Actions and behaviour queues

 The emotion-behaviour system, and stimulation

120. OVERVIEW

How does Vector get excited from praise? Vector has an emotional state that is seen in his affect –

his facial expression, head and arm posture – how he behaves and responds, as well as the actions

he initiates.

Audio Engine

Decay

Mood

Behavior Tree

Stimulation

Vectors mood is affected by external stimulation, and his feedback on his successes (and failures)

in his activities. His current mode affects the choices he makes and the behaviors he takes,

including those in response to events and stimulation. His emotional state is also reflected in how

the audio engine modulates its effects, even potentially choosing other effects or sounds. Vectors’

emotions are transitory though: heightened emotions decay, based on the stimulus and behavior

that drove them.

This emotion model and coupling their effects with other systems is managed by the

“MoodManager.”

121. EMOTIONS, AND STIMULATION

It’s thru stimulation of these emotions that Vector responds to praise. The label “emotion”

shouldn’t be taken too seriously, as it doesn’t model psychological moods, and other concepts. It

does just enough to convey character.

121.1. STIMULATION

Vector uses a concept of a stimulation level to guide how much he should initiate

 “When stimulation is low, the robot is chill,”.. Vector is studiously observing but not

acting out. “Then if you start making noise, or make eye contact with the robot, and

certainly if you say ‘Hey Vector,’ that spikes [stimulation] way up...” But Vector also

picks up subtler actions–peripheral movement and noises, for instance, or the room lights

turning on and off. “If he gets stimulated enough, he’ll drive off his charger and start to

socialize with you, … say your name, greet you, give you a fist-bump, potentially.”

Figure 124: The

functional flow of the

mood

Captain 2018 quoting

Brad Neuman

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 411

Audio

Inputs

· Sound level

· Wake Word

· Intents

· Illumination

level

· Faces, Gaze

Stimulation

Video

Input

IMU

Pick Up / In-Air

Detector

Cliff

Sensors

· Fall Detector

· Fist Bump

· Poke

· Being held

PettingTouch

121.2. THE EMOTION MODEL

Stimulation is just one of the dimensions in Vector’s emotional model. Some dimensions are

influenced by the kind stimulation he is receiving, but others are from internal feedback Vectors

behaviors. Altogether he has five dimensions to his emotional state.

 Stimulated (or the stimulation level) is from those sensory experiences described earlier;

 Social, or “how eager [he] is to interact with users generally.” “Hearing his name

stimulates Vector, for instance, but it also makes him more social.”

 Confident: “Vector’s confidence is affected by his success in the real world. The hooks on

his arms sometimes don’t line up with those on his cube, for instance, and he can’t pick it

up. Sometime he gets stuck while driving around. These failures make him feel less

confident, while successes make him more confident and more happy.”

 Happy. This is Vectors sense that, overall, things are going well.

 Trust56

Overall, Vector possesses just enough dimensions/aspects to his emotion model to drive responses

and his goal-driven behaviour, giving him a personality. When more dimensions are used, it is

harder to get them right, and the less convincing the character is when they aren’t.

121.3. SIMPLE MOODS

The emotions reflect short-term values across the 5 dimensions that arise as a result of stimuli.

Vector also has a simple mood that is distinguished from emotion by changing at a much slower

rate. A simple mood is a name that maps to some emotion value ranges. These are built into the

libcozmo_engine. The simple moods include:

 Default

 Frustrated

 HighStim

 LowStim

56 Trust was added in version 1.6. Vector initially only had the first four. Cozmo had nine, so it seems plausible that Vector would have
developed more dimensions over time.

Figure 125: The

stimulation from

sensations

Wolford et al, 2018

Captain 2018

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 412

 MedStim

It is not known how the mood interacts with the emotions.

121.4. INTERACTION WITH THE BEHAVIOR ENGINE

The behavior engine receives the stimulation events, and using a behavior tree, posts emotion

event to the mood manager. (The engine may base its decision what to post on the current

mood.) An emotion event is just an identifier string. The mood manager maps the emotion event

to an emotion affector. This is the emotion dimensions impacted by the event, values describing

how much the event impacts those emotion dimensions, and a decay graph that describes how the

heighten emotion fades away toward a neutral state.

Decay

Mood
Behavior

Tree

Stimulation

Events

Behavior

Event Name
Emotion

Affector

Emotion

Event

The active behaviors (which are also selected by the behavior tree) may post emotion events to the

mood manager as well.

121.5. MOOD MANAGER CONFIGURATION

At start up, the mood manager scans the configuration files building a table mapping the emotion

event names to the emotion affector.

The configuration files for the mood manager are located in a folder at:

/anki/data/assets/cozmo_resources/ config/engine/emotionevents

This is path hardcoded into libcozmo_engine. It is a folder that contains a set of JSON files, all

with the same structure. Each of these files is loaded. Each is a structure containing the following

fields:

Field Type Description

emotionEvents EmotionEvent[] An array emotion event structures (see below).

The EmotionEvent describes how the emotions respond to an event. It has the following

structure:

Field Type Description

name string The name of the event (see appendix K, Table 641:

The emotion event names)

emotionAffectors EmotionAffector[] The impact on the emotion state.

repetitionPenalty RepetitionPenalty This is a “time ratio” describing how the value

decays. Optional.

emotion event

Figure 126: Mapping

an emotion event to

how it impacts the

emotion model

Table 539:

CheckUpdateStatusRes

ponse JSON structure

Table 540:

EmotionEvent JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 413

The EmotionAffector describes how an emotion dimension should be modified:

Field Type Description

emotionType string The dimension or type of emotion (“Happy”,

“Confident”, “Stimulated”, “Social”, or “Trust”)

value float The value to add to the emotional state. The range

is usually -1 to 1

Altogether, the files respond to the following “emotion event” names. Some are external stimuli,

some are events in general, some are events regarding whether or not a behaviour succeeded, or

failed (failed with retry, failed with abort).

121.5.1 The RepetitionPenalty

The RepititionPenalty structure contains the following fields:

Field Type Description

nodes XY[] This is a “time ratio” describing how the value

decays with time.

121.5.2 The XY decay graph

The XY structure is used to define how a value (often the value associated with an emotion

dimension) should decay with time. This structure contains the following fields:

Field Type Description

x float With time graphs, this is “the time in seconds since

the most recent event (which changed the emotion

by more than some delta).”

With value slopes, this is “the emotion value.”

y float With time graphs, this is “the ratio of the original

value that should be reached by the given time.”

With value slopes, this is “the amount it decays

(towards zero) per minute as a fixed amount (not a

ratio).” The value never goes below zero.

121.6. MOOD CONFIGURATION

A mood configuration files is located at:

/anki/data/assets/cozmo_resources/ config/engine/mood_config.json

Table 541:

EmotionAffector JSON

structure

Table 542:

RepititionPenalty

structure

Table 543: XY structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 414

This is path hardcoded into libcozmo_engine.

The file is a structure containing the following fields:

Field Type Description

actionResultEmotionEvents TBD struct

audioParameterMap struct This is a structure that maps an emotion type to an

audio parameter’s string name. The audio

parameter is set to current emotion type’s value.

Optional

decayGraphs DecayGraph[] This describes how an emotion decays.

defaultRepetitionPenalty RepetitionPenalty This is a “time ratio” describing how the value

decays. Optional.

eventMapper struct

simpleMoodAudioParameters struct Optional

valueRanges ValueRange[] The allowed value ranges for given emotion types.

Note: this need not exhaustively define the range

for all emotion types. Values not listed should be

assumed to have a range of -1..1

The DecayGraph structure contains the following fields:

Field Type Description

emotionType string The dimension or type of emotion (“Happy”,

“Confident”, “Stimulated”, “Social”, or “Trust”).

“default” also matches

graphType string “TimeRatio” or “ValueSlope” . The default is

“TimeRatio”.

nodes XY[] Array of structures describing how the value decays

with time.

The ValueRange structure contains the following fields:

Field Type Description

emotionType string The dimension or type of emotion (“Happy”,

“Confident”, “Stimulated”, “Social”, or “Trust”)

max float The maximum value for the emotion type

min float The minimum value for the emotion type

122. REFERENCES & RESOURCES

Captain, Sean; Can emotional AI make Anki’s new robot into a lovable companion? , Fast

Company, 2018-8-8

https://www.fastcompany.com/90179055/can-emotional-ai-make-ankis-new-robot-into-a-

lovable-companion

Table 544: Mood config

JSON structure

Table 545: DecayGraph

structure

Table 546: ValueRange

structure

https://www.fastcompany.com/90179055/can-emotional-ai-make-ankis-new-robot-into-a-lovable-companion
https://www.fastcompany.com/90179055/can-emotional-ai-make-ankis-new-robot-into-a-lovable-companion

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 415

CHAPTER 30

Behavior Tree

This chapter describes Vector’s behaviour tree and how behaviors are configured:

 Behavior trees, parameters for behaviors, conditions that allow a behavior or stop a

behavior

 Cube spinner event mapping.

123. OVERVIEW

Behaviors are why Vector wants to shove stuff off of the desk.

Vector employs a behavior tree that decides if a behavior can run or can no longer run. It doesn’t

take it to the extreme a detailed decision tree scripting every action and response. Most of the

behavior tree is is focused on ensuring that transition between behaviors isn’t too abrupt, and

provides the settings (or preferences) for the behavior.

The fields and structures of the behavior tree are pretty ad hoc though. This seems to be the norm

in the video game industry

The “design principles” listed in this paper are a rather transparent attempt to impose a

structure on what might otherwise appear to be a random grab-bag of ideas – interesting,

perhaps, in and of themselves but not terribly cohesive as a whole.

124. BEHAVIOR TREE

The behavior tree is composed of nodes in JSON files. Each of the behavior nodes has a unique

identifier, called behaviorID. This is a way to make the records unique so that they can be looked

up. It is unlikely that it links to any special code or modules within libcozmo_engine.

The nodes also have a field – behaviorClass – that says how to interpret the node parameters, if the

behavior is activated. This class name links to code/modules within libcozmo_engine. There are

86 different behaviour classes.

Behavior nodes can initiate other behaviors. The identity of the behavior they launch may be

called out in the configuration of the node, or be hardcoded internally. To prevent loops, the chain

of the nodes must be acyclic. The concern is that a behavior node kicks off another (and so on),

eventually to a child node initiate another copy of the first node, leading to an infinite loop of

behaviors being started on pushed onto the stack. Not only doesn’t it give expected results,

eventually the software will run out of memory, and crash.

libcozmo_engine kicks off the initial behavior that forms the root of the tree. Vector, at the top

level, has 7 broad states:

 PR demo

 Factory test (e.g. the playpen tests)

 Acoustic testing

 On-boarding

Isla 2005

behavior tree nodes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 416

 Normal

 Developer

 Post on-boarding

These states are mapped to initial behavior identifier. Some have the mapping built-in to the

software (hardcode), the others this mapping is in the above JSON configuration file (in the

victor_behavior_config.json file; more on this below). In normal operation, this is the

“InitNormalOperation” behavior.

BehaviorIDs

BehaviorIDs
Behavior

Node

Behavior

Node

Behavior

Node

BehaviorIDs
Behavior

Node

Behavior

Node

Behavior

Node

It is built on the DispatcherStrictPriority behavior class, listing behaviors to sequentially check to

see if they can be run. The top node only refers to behaviors that in a list of a behaviors to invoke

sequentially. The behaviors listed at that second level in turn reference behaviors that carry out

actual AI features.

The decision tree logic is called out with the nodes. There is a portion of the logic that is used to

check to see if the behavior can be run. This logic can be used to delay running the behavior until

some clean or stabilization of other stuff has occurred. And there is a portion of the logic that is

used to check to see if the behavior should be cancelled.

124.1. TIMERS

Behaviors can have an associated timer, similar to an animations cool down timer. This prevents

the behavior from re-engaging too quickly. These timers can be used as part of the conditional

rules that enable or disable a behavior.

Timer Description

FistBump

ObservingOffChager

ObservingOnCharger

ReactToIllumination

ReactToJoltInPalm

The timers are handled by BehaviorTimerManager().

Figure 127: The

behavior tree fan out

Table 547: Behavior

timers

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 417

124.2. CONFIGURATION

The configuration files for the behavior tree are located:

/anki/data/assets/cozmo_resources/ config/engine/behaviorComponent/victor_behavior_

config.json

This is path hardcoded into libcozmo_engine.

Note: most of the names of the structures in this chapter are arbitrary. They were made up to ease

readability and documentation. The files do not reference any such structure names.

124.3. BEHAVIOR NODE

The following fields are common to all behavior nodes:

Field Type Description

animationName string The name of an animation to play {note not a

trigger name}.

anonymousBehaviors Behavior[] A list of behaviors that are executed. Optional

associatedActiveFeature string Note: this is the high level AI feature, not the

feature gate. Optional

behaviors string[] Array of behavior names, in order; these

behaviorName are in the anonymousBehaviors array.

Can also be in…? Optional

behaviorClass string Often these are the same

behaviorID string

behaviorName

behaviors string If it is a string, this is the behaviorID of the

behavior to run.

 string[]

If it is an array of strings, this is one or more

behaviors to run to in sequence. That is, the fist

behavior is initiated, and the current behavior node

is paused until the new completes. Then the next

one in the sequence is initiated, and so on in order.

 BehaviorConfig[] If it is an array of structures, this is a set of possible

behaviors to run; they are picked randomly. based

on weight.

behaviorStatToIncrement string Optional

delegateID string

driveOffChargerBehavior

emotionEventOnActivated string e.g. RespondToShortVoiceCommand or

DanceToTheBeat. Optional.

faceSelectionPenalties

getInAnimation string The animation trigger name of the animation to

play when starting the behavior. Optional

getOutAnimation string The animation trigger name of the animation to

play when exiting the behavior. Optional

Table 548: Behavior

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 418

headAngle_deg float Optional

postBehaviorSuggestion string Optional

resetTimers

respondToUserIntents TBD[] Optional. Only key is “type” (with a value such

greeting_goodbye) The intent string is the User

Intent (see table in appendix J)

wantsToBeActivatedCondition Condition If the condition is false, the rest of the behavior is

skipped. Some of the conditions are used to wait

until the robot is in a state that he can carry out the

behavior (and past stuff that could cause false

triggers are behind us) Optional

wantsToCancelSelfCondition Condition If the condition is true, the rest of the behavior is

skipped. Optional

BEHAVIORCONFIG

The BehaviorConfig structure has the following fields:

Field Type Units Description

behavior string The name of a behaviorID. The anonymous

behaviors in the current behavior node are checked

first to find a behavior node with this id. Then the

global table.

cooldown_s float seconds The amount of time after this behaviour completes

before it can be run again. A value of “-1” means

to run the behavior only once – it gives the

cooldown timer a value of forever.

weight float Optional

Note: the weights do not have to sum to 1.0

Given an array of BehaviorConfig structures, the list is prescreened to eliminate behaviors that

already running or still in cooldown. A behavior is randomly selected from this list based on its

weighting, and launched.

124.4. CONDITION NODES

A condition node is used as part of the behavior tree to determine if a behavior is eligible, or if a

running behavior should be cancelled. The interpretation of the condition is (mostly) controlled by

the conditionType field. This type defines what other fields will be looked at.

The following are the kinds of condition nodes:

conditionType Description

AlexaInteractionActive This condition is true if Vector’s Alexa modules are

currently interacting with a person.

BatteryLevel This type of condition compares the current battery state

with a specified state. Although any of the states can be

used, the current behavior tree nodes only check for low

Table 549:

BehaviorConfig

parameters

Table 550: Types of

condition nodes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 419

battery.

BeatDetected This condition is true if a music beat has been detected

BehaviorTimer This condition is true if

BeingHeld This condition is true if Vector is being held.

CarryingCube This condition is true if Vector is currently carrying a cube.

CliffDetected This type of condition is true if a cliff sensor has detected

an edge.

Compound This type of condition is used for boolean logic. It is the

only kind that recurses to other compound structures.

Emotion This condition is true if the value for the given emotion

dimension is above a threshold.

EyeContact This condition is true if someone is making eye contact

with Vector.

FeatureGate This type of condition is true if a specified AI feature is

active or inactive.

HighTemperature This type of condition is true if Vector’s temperature is

above an acceptable limit.

InCalmMode This type of condition is true if Vector is in a calm

emotional state.

IsMaintenanceReboot This type of condition is true if Vector has rebooted for a

software update or other maintenance reasons.

IsNightTime This type of condition is true if Vector [thinks it is night?

the illumination level is dark?]

MotionDetected This type of condition is true if Vector sees some motion

in his peripheral vision.

ObjectInitialDetection This condition is true if

ObjectKnown This condition is true if

ObstacleDetected This condition is true if Vector has encountered an

obstacle.

OffTreadsState This type of condition is true if Vector’s current state

matches a conditions such as on his tread, or has been

picked up, is being held, is being put back down, has fallen

(on his side). There is a time component to ensure that

state is stable, to prevent overreacting.

OnCharger This condition is true if Vector is currently on his charger

(i.e. he is in his dock) and it is providing energy.

OnChargerPlatform This condition is true if Vector is currently on his charger

(i.e. he is in his dock); it may or may not be providing any

energy.

ProxInRange

RobotHeldInPalm This condition checks whether or not Vector is being held.

RobotInHabitat This is true if Vector is in his habitat.

RobotPickedUp This type of condition is true if Vector is picked up – being

held. (does “in the air” count?)

RobotPitchInRange This type of condition is true if Vector’s pitch is within a

specified range.

RobotPlacedOnSlope

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 420

RobotRollInRange This type of condition is true if Vector’s roll is within a

specified range.

RobotShaken This type of condition is true if Vector has been shaken.

RobotTouched This type of condition is true if Vector has been

touched/petted (for at least a minimum duration).

SalientPointDetected This condition is true if

StuckOnEdge This type of condition is true if at least one tread has gone

over the edge. Perhaps the cliff sensors on one side show

in open space, perhaps Vector can tell that the tread isn’t

moving the robot?

TimedDedup This condition is true if

TimerInRange This condition is true if a specified timer is within a

specified value range.

TooHotToCharge

TriggerWordPending

TrueCondition This is condition is always true.

UnexpectedMovement

UserIsHoldingCube This is true if the user is holding the cube.

The Condition structure has the following possible fields:

Field Type Condition Type Description

and Condition[] Compound The condition is true iff all of the sub-

conditions are true; false otherwise. The

array must contain at least two conditions

The array must contain at least two

conditions. Optional

allowPotentialBeat boolean BeatDetected

begin_s float TimerInRange Wait for the timer to have been going for at

least this number of seconds.

conditionType string (all conditions) One of the conditions listed in Table 550:

Types of condition nodes

cooldown_s float BehaviorTimer The minimum duration between behaviors.

dedupInterval_ms int TimedDedup

emotion string Emotion The name of the emotion dimension to fetch

the value for.

expected boolean FeatureGate This is compared against the feature toggle

value, the FeatureGate condition is true iff

they have the same values.

feature string FeatureGate The name of the feature toggle, e.g.

“HowOldAreYou”

firstTimeOnly boolean ObjectInitialDetection

invalidSensorReturn boolean ProxInRange If true, matches when the proximal sensor is

unable to measure the distance to the object.

Default is false. Optional

maxAge_ms int ObjectKnown

Table 551: Condition

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 421

maxPitchThreshold_deg float RobotPitchInRange The maximum acceptable pitch reported by

the IMU.

maxProxDist_mm float ProxInRange The maximum acceptable distance reported

by the time of flight sensor.

maxRollThreshold_deg float RobotRollInRange The maximum acceptable roll angle reported

by the IMU.

maxTimeSinceChange_ms int OffTreadsState Optional

min Emotion The minimum acceptable value associated

with the given emotion dimension.

minAccelMagnitudeThresh

old
uint RobotShaken The threshold (in milli-g’s?) for the

vibrations on the accelerometer to be

considered a shake event.

minDuration_ms uint CliffDetected The minimum amount of time that the cliff

sensors have registered an cliff of this

condition should be true. Optional

minDuration_s float RobotHeldInPalm The minimum amount of time that the rest of

this condition should be true. Optional

minPitchThreshold_deg float RobotPitchInRange The minimum acceptable pitch reported by

the IMU.

minProxDist_mm float ProxInRange The minimum acceptable distance reported

by the time of flight sensor.

minRollThreshold_deg float RobotRollInRange The minimum acceptable roll angle reported

by the IMU.

minTimeSinceChange_ms int OffTreadsState Optional

minTouchTime float RobotTouched The robot must be touched for at least this

duration (in seconds) this condition to be

true.

motionArea string MotionDetected The area of the vision that detected the

motion should match this string: “Left”,

“Right”, (potentially “Ground”)

motionLevel string MotionDetected “High”

not Condition Compound The condition is true iff the sub-condition is

false; otherwise the condition is false.

Optional

numCliffDetectionsToTrigg

er
uint CliffDetected A count of the number separate cliff sensors

that are to trigger before a cliff is considered

to have been detected.

objectTypes string[] ObjectInitialDetection

ObjectKnown

The acceptable kinds of object kinds/faces to

meet this condition. Optional

or Condition[] Compound The condition is true if any of the sub-

conditions are true; false otherwise. The

array must contain at least two conditions.

Optional

shouldBeHeld boolean BeingHeld If true, the condition is true iff the robot is

currently being held. If false, the condition is

true iff the robot is not currently being held.

shouldBeHeldInPalm boolean RobotHeldInPalm If true, the condition is true iff the robot is

currently being held in the palm of a hand. If

false, the condition is true iff the robot is not

currently being held in the palm of a hand.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 422

shouldDetectNoCliffs boolean CliffDetected If true, the condition is true iff a cliff has not

been detected.

subCondition Condition TimedDedup

targetBatteryLevel string BatteryLevel e.g. “Low”

targetSalientPoint string SalientPointDetected e.g. “Person” This could be other outputs of

the neural network matching.

targetState string OffTreadsState “Falling”, “InAir” , “OnBack”, “OnFace”,

“OnLeftSide”, “OnRightSide”, “OnTreads”

timerName string BehaviorTimer “ReactToIllumination”

125. A LOOK AT SOME INTERESTING BEHAVIORS

There are too many behavior classes to dig into. But a few are particularly fun to look at.

125.1. SHOVING STUFF OFF OF THE TABLE

The BumpObject class is likely the behavior that drives Vector to shove stuff off of desk. There is

only one behavior tree node with this class. It has the id ExploringBumpObject and is held in the file

/anki/data/assets/cozmo_resources/config/engine/behaviorComponent/behaviors/victorB
ehaviorTree/highLevelDelegates/exploring/exploringBumpObject.json

The BumpObject class takes the following extra parameters:

Field Type Units Description

maxDist_mm uint mm The maximum distance to the potential object to

bump.

minDist_mm uint mm The minimum distance to the potential object to bump

pBumpWhenEvil float Probability of bumping things when being evil?

pBumpWhenNotEvil float Probability of bumping things when not being evil?

pEvil float Probability of being evil?

125.2. POUNCING

Pouncing is where Vector springs forward to leap on an object, such as a finger.

 Vector detects visual motion, and turns toward that (see motion detection). In this he

turns left (or right) to where he detected the motion (the Turn behavior class)

 When he has a distance measurement (from the proximity sensor) (The PounceWithProx

behavior class)

 When he is close enough, the animation takes over; he’ll make his facial expressions,

moves his arms, and tries to pin the object with his arms (“mousetrap”). Note: the

animations can’t be used to drive toward the target earlier; they aren’t linked into the

proximity sensors for driving.

 If nothing else is happening, he’ll wait for up to 30 seconds before losing interest.

Table 552: BumpObject

behavior structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 423

A behavior tree node, using the DispatcherStrictPriority behavior class, coordinates these. The

DispatcherStrictPriority class takes the following extra parameters:

Field Type Units Description

interruptActiveBehavior boolean

The Turn class takes the following extra parameters:

Field Type Units Description

shouldTurnClockwise boolean True if Vector should turn clockwise; false if he

should turn counter clockwise

turnDegrees int The number of degrees to turn.

125.3. REACTING TO SOUND

Vector has two related behaviors for reacting to sound – deciding that there is some activity and

that he should react, or even play.

The ReactToSound behavior class is used to rouse Vector and respond if there are any sudden

noises, or there sounds like activity in the room:

Field Type Units Description

micAbsolutePowerThreshold float “a mic power above this will always be considered

a valid reaction sound” 0…4?

micConfidenceThresholdAtMinPow
er

float Used in conjunction with micMinPower? 0…5000

micDirectionReactionBehavior string The behavior ID to use for reactions

micMinPowerThreshold float “a mic power above this will require a confidence

of at least kRTS_ConfidenceThresholdAtMinPower to

be considered a valid reaction sound” 0..3 ? 999.9

is considered impossibly high”

The ReactToMicDirection behavior class is used to allow Vector to respond to direction that the

sound is coming from. It maps the sound direction to the terms “TwelveOClock”, “OneOClock”,

“ambient”, and has conditions like “OnSurface” and “OnCharger”.

See Chapter17, section 76.2 Spatial audio processing for where it the microphone sound is coming

from.

Table 553:

DispatcherStrictPriority

behavior structure

Table 554: Turn

behavior structure

Table 555:

ReactToSound

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 424

125.4. DANCING

Vector can dance to music, making moves in response to the beats. The dancing can be initiated

two different ways. The first step is if a beat is detected. The second is if Vector is verbally told

to dance.

Dance

dispatcher

Voice, App

Intent

Dance

Moves

Beat

Detector

Tempo

Listen for

the Beat

Dance to

the beat

coordinator

Beat detected Beat detected

The details of the beat detector and tempo measurement are in Chapter 18 section 76.5 Beat

Detection.

125.4.1 Dancing if a beat is detected

A behavior node (of behavior class “DanceToTheBeatCoordinator”) is regularly invoked as part of

the behavior tree (see section 124 Behavior Tree). This node has the pre-condition to check that a

beat has been detected. This isn’t quite the same as reacting sounds, but it is similar. The

BeatDetected condition structure has the following parameters:

Field Type Units Description

allowPotentialBeat boolean Default: false. Optional

If a beat has been heard, the DanceToTheBeatCoordinator proceeds in two phases. The first kicks

off a helper behavior to listen for music. If it detects music (beats), it then fires off a dance

behavior: there are two such behaviors, depending on whether or not it was on the charger. If there

is no music detected – or Vector is no longer on his treads – this behavior exits.

The behavior’s configuration structure has the following parameter fields:

Field Type Units Description

listeningBehavior string behaviorID The name of a behavior node to invoke.

longListeningBehavior string behaviorID The name of a behavior node to invoke.

offChargerDancingBehavior string behaviorID The name of a behavior node to invoke.

onChargerDancingBehavior string behaviorID The name of a behavior node to invoke.

125.4.2 Dancing by voice command

A behavior node (of behavior class “DanceToTheBeatVoiceCommand”) is regularly invoked as part

of the behavior tree (see section 124 Behavior Tree). Part of pre-conditions for being able to

execute this node is that someone has given Vector a command to dance. This is done by the

“respondToUsersIntents” condition including the “imperative_dance” intent. If there is no such

user intent pending, the node is skipped.

Figure 128: Flow of the

detecting and dancing to

music

Table 556:

BeatDetected

parameters

Table 557:

DanceToTheBeatCoordi

nator parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 425

Otherwise, the intent is dequeued, Vector drives off of the charger, listen for the music beats, and

(if there are any) begins dancing.

125.4.3 Listening for the beat

The ListenForBeats behavior class is used to listen for multiple beats and to get the tempo. The

behavior exits once music has been heard, or if there is a timeout. Then the behavior node that

invoked it is then resumed to initiate the next step.

Perform

postListeningAnim

animation

Time out?

Yes

No

No
Heard Beat?

Perform

listeningAnim

animation

Yes

done

Perform

preListeningAnim

animation

Listen

Perform

noBeatAnim

animation

Set BeatDetected

to true

The behavior plays animations when it begins, ends, and if it doesn’t hear any beats. (If it does

hear beats, the dancing behaviors will play their own animations.) It sets the behavior tree variable

“BeatDetected” to true if it heard beats; otherwise it is set to false.

Figure 129:

ListenForBeats behavior

function

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 426

The behavior’s configuration structure has the following parameter fields:

Field Type Units Description

cancelSelfIfBeatLost boolean If true, exits the behavior when the beat has been

lost,

listeningAnim string The name of an animation trigger that is played

while listening for music and getting the tempo.

maxListeningTime_sec float seconds The maximum amount of time to listen for music

minListeningTime_sec float seconds Listen for at least this amount of time before

concluding that there is no music and exiting.

noBeatAnim string The name of an animation trigger that is played

when the behavior exits because there is no music

playing.

postListeningAnim string The name of an animation trigger that is played

after music has been detected, and is transitioning

to the dancing.

preListeningAnim string The name of an animation trigger that is played

when this behavior is started, before listening for

music has fully started.

The dance feature employs multiple instances of these to detect beats.

125.4.4 The Robo-boogie

Once Vector has decided to get his groove on, he chooses a dance from the many kinds of dances

of that he knows about. The dances themselves are partly-randomized sequences of dance move

animations that are coordinated the beats of the music.

The selection of the dance is performed using a node with the DispatcherRandom behavior class.

The different dances (as behaviors nodes) are listed in the “behaviors” array (along with some

weighting to help randomize with dance is selected). A new behavior – one that performs the

dancing – is randomly selected from this.

A particular dance is an instance of the DanceToTheBeat behavior class. A dance includes the

dance moves, whether the back pack lights can play along, and the facial expression.

Field Type Description

backpackAnim string The backpack animation trigger name to play while

dancing.

danceSessions DanceSession[] The dance moves that make up the dance.

eyeHoldAnim string The animation trigger name to animate the face

getOutAnim string The animation trigger name to play when exiting this

behavior.

useBackpackLights boolean If true, play the backpack lights animation. Default is

false(?)

Table 558:

ListenForBeats

parameters

Table 559:

DanceToTheBeat

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 427

The dance moves – called dance sessions – are made up of smaller animated movements called

“dance phrases.” They can (optionally) be coordinated with the beat of the music. These are

captured in the DanceSession structure:

Field Type Description

canListenForBeats boolean If true, then the animation (in the dance phrases) will be

synchronized with beats with the beat. If false, then the

beat events from the beat-detector will be ignored.

dancePhrases DancePhraseConfig
[]

The sequence of (randomized) animations. These are

played in order.

playGetoutIfInterrupted boolean If true, and is interrupted by another animation, it plays

the animation specified by getOutAnim (in the

containing structure).

The dancing motions– dance phrases – are “made up of one or more possible dance animations …

strung together and played on sequential musical beats.” The DancePhraseConfig structure

“specifies the rules by which dance phrases are generated when the behavior is run.” These differ

from animation groups: here a random list of animations to play is created, rather than selecting

just one. This structure has the following fields:

Field Type Description

anims string[] The list of animation names (rather than trigger names)

to randomly draw from. There must be at least one

animation given.

maxBeats uint The animation is played no more than this number of

times.

minBeats uint The animation is played at least this number of times.

multipleOf uint The animation is played is a multiple of this number of

times.

“The number of animations that make up the phrase is random, but is always between ‘minBeats’

and ‘maxBeats’, and is always a multiple of ‘multipleOf’.” The “animations are randomly drawn

from the [anims] list in accordance with the min/max beats.”

If canListenForBeats (in the containing structure) is true, the animation (may) have an event key

frame that pauses the animation until a musical beat is heard and a DANCE_BEAT_SYNC event is sent

to the animation engine. In this case, the animations must have one event key frame, and the

event_id must be “DANCE_BEAT_SYNC”.

126. USER CONDITIONS

There is an unusual configuration file that looks like it was intended to allow some user defined

behaviors, tuning of behaviours or responses:

/anki/data/assets/cozmo_resources/ config/engine/userDefinedBehaviorTree/conditionTo

BehaviorMaps.json

This is path hardcoded into libcozmo_engine. It is a configuration that links to a bunch of

backpack and cube lights patterns.

Table 560:

DanceSession

parameters

Table 561:

DancePhraseConfig

parameters

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 428

127. REFERENCES & RESOURCES

Isla, Damian; Handling Complexity in the Halo 2 AI, GDC 2005 Proceeding, 2005 March 11

https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php

It is said that this presentation kicked off the widespread use of behavior trees in video games.

https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 429

PART VII

Maintenance

This part describes practical items to support Vector’s operation.

 SETTINGS, PREFERENCES, FEATURES AND STATISTICS. A look at how Vector syncs with remote

servers

 SOFTWARE UPDATES. How Vector’s software updates are applied.

 DIAGNOSTICS & STATS. The diagnostic support built into Vector, including logging and usage

statistics

drawing by Steph Dere

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 430

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 431

CHAPTER 31

Settings, Preferences,

Features, and Statistics

This chapter describes:

 The owner’s account settings and entitlements

 The robot’s settings (owner preferences)

 The robot’s lifetime stats

128. THE ARCHITECTURE

The architecture for setting and storing settings, statistics, account information is:

Mobile App

JDocs

server

Mobile App

& Python

SDK

applications

/net/connman/service/wifi_..._managed_psk

/dev/socket/_jdocs_engine_client

/dev/socket/_switchboard_gateway_server

Vic-Gateway

Vic-Switchbox

/dev/socket/jdocs_server

Vic-Engine

WiFi

Configuration

Vic-Cloud

The Vic-Cloud service accesses information on a remote server.

The Vic-Switchbox interacts with the WiFi subsystem (connman) to allow the mobile App to set

the preferred WiFi network to use. The mobile app must use Bluetooth LE to do this.

Vic-Gateway interacts with the mobile App and SDK programs to changes the robot settings.

Vic-Engine receives the preferences from the Vic-Cloud and Vic-Gateway, to carry out an changes

in behaviour of Vector.

128.1. STORAGE LOCATION

Many of the settings are stored in the “/data/” folder which is located on the modifiable

“userdata” partition.

The settings in the “/data/data/com.anki.victor/persistent/jdocs” folder are all JSON files with

the following fields:

Figure 130: The

architecture for storing

preferences, account

info, entitlements, and

tracking stats

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 432

Field Type Description

client_meta string The string is always empty.

cloud_accessed bool This is always true

cloud_dirty_remai
ning_sec

uint This is always true

cloud_get_time uint The time stamp of the cloud settings?

doc_version uint64 A number used to uniquely identify changes to the setting structure, and be

able to tell which one is the more recent settings. Most often this is the

number of times that the settings have been changed.

fmt_version uint64 The version number of the jdoc structure schema; this is always 1.

jdoc struct The settings structure for this kind of jdoc. (These will be discussed below.)

129. WIFI CONFIGURATION

The WiFi configuration (aka settings or preferences) is entirely local to the Vector robot. The

information about the WiFi settings is not stored remotely.

The mobile application can configuration the WiFi settings via Vic-Switchbox commands. The

WiFi is managed by connman thru the Vic-Switchbox:

 To provide a list of WiFi SSIDs to the mobile app

 To allow the mobile app to select an SSID and provide a password to

 Tell it forget an SSID

 To place the WiFi into Access Point mode

The WIFI configuration is stored in folders located in “/data/lib/connman/” and is managed by

connmanctl. The folder names are based on the SSID (stored as a decimal number) and the WiFi

security method. Within each folder is s settings file that contains the SSID, the passphrase, and

other settings for that WiFi access point.

130. THE OWNER ACCOUNT INFORMATION

The owner account information is sent from the mobile application to Anki servers at time of

registration and setting up a Vector. The owner account information includes:57

JSON Key units Description & Notes

user_id base64 A base64 token to identify the user

created_by_app_name string The name of the mobile application that register the owner.

Example: “chewie”

created_by_app_platform string The mobile OS version string when the mobile application created

the owners account. Example “ios 12.1.2; iPhone8,1

created_by_app_version string The version of the mobile application that register the owner.

Example: “1.3.1”

deactivation_reason

dob YYYY-MM-DD The owner’s date of birth (the one given at time of registration)

57 It is not clear why there is so much information, and why this is sent from the Jdocs server in so many cases.

Table 562: Persistent

structure JDoc files

Table 563: The

owners account

information

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 433

drive_guest_id GUID A GUID to identify the owner. This is the same as the “player_id”

email string The email address used to register the account; the same as the user

name.

email_failure_code The reason that the email was unable to be verified

email_is_blocked boolean

email_is_verified boolean True if the email verification has successfully completed. False

otherwise.

email_lang IETF language

tag

The IETF language tag of the owner’s language preference.

example: “en-US”

family_name string The surname of the owner; null if not set

gender string The gender of the owner; null if not set

given_name string The given of the owner; null if not set

is_email_account boolean

no_autodelete boolean

password_is_complex boolean

player_id GUID A GUID to identify the owner. This is the same as the

“drive_guest_id”

purge_reason

status string Example “active”

time_created string The time, in ISO8601 format, that the account was created

user_id base64 A base64 token to identify the owner

username string Same as the email address

131. PREFERENCES & ROBOT SETTINGS

The following settings & preferences are stored in (and retrieved from) the JDoc server. They are

set by the mobile app or python SDK program using the HTTPS protocol described in chapter 15.

They may also be set (in some cases) by the cloud in response to verbal interaction with the owner,

via vic-cloud (e.g. “Hey Vector, set your eye color to teal.”).

131.1. ENUMERATIONS

131.1.1 ButtonWakeWord

When Vector’s backpack button is pressed once for attention, he acts as if someone has said his

wake word. The ButtonWakeWord enumeration describes which wake word is treated as having

been said:

Name Value Description

BUTTON_WAKEWORD_ALEXA 1 When the button is pressed, act as if “Alexa” was said.

BUTTON_WAKEWORD_HEY_VECTOR 0 When the button is pressed, act is “Hey, Vector” was said.

Table 564:

ButtonWakeWord

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 434

131.1.2 EyeColor

This is the selectable colour to set Vector’s eyes to. The JdocType enumeration maps the playful

name to the following value used in the RobotSettingsConfig (and vice-versa) and the colour

specification:

Name Value Hue Saturation Description

CONFUSION_MATRIX_GREEN 6 0.30 1.00

FALSE_POSITIVE_PURPLE 5 0.83 0.76

NON_LINEAR_LIME 3 0.21 1.00

OVERFIT_ORANGE 1 0.05 0.95

SINGULARITY_SAPHIRE 4 0.57 1.00

TIP_OVER_TEAL 0 0.42 1.00

UNCANNY_YELLOW 2 0.11 1.00

The mapping from to enumeration to color values is held in

/anki/assets/cozmo_resources/ config/engine/eye_color_config.json

(This path is hardcoded into libcozmo_engine.so.) This JSON configuration file is a hash that

maps the EyeColor name (not the numeric value) to a structure with the “Hue” and “Saturation”

values suitable for the SetEyeColor API command. The structure has the following fields:

Field Type Description & Notes

Hue float The hue to use for the color

Saturation float The saturation to use for the color.

This structure has the same interpretation as the SetEyeColor request, except the first letter of the

keys are capitalized here.

The mapping of the number to the JSON key for the eye colours configuration file is embedded in

Vic-Gateway. Adding more named colours would likely require successful complete

decompilation and modification. Patching the binary is unlikely to be practical. The colours for

the existing names can be modified to give custom, permanent eye colours.

131.1.3 Volume

This is the volume to employ when speaking and for sound effects. Note: the MasterVolume API

enumeration is slightly different enumeration.

Name Value Description

MUTE 0

LOW 1

MEDIUM_LOW 2

MEDIUM 3

MEDIUM_HIGH 4

HIGH 5

Table 565: EyeColor

Enumeration

Table 566: The eye

colour JSON structure

Table 567: Volume

Enumeration

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 435

131.2. ROBOTSETTINGSCONFIG

The entitlement settings associated with the user account (as opposed to the per-robot settings) are

stored in the cloud. The settings are retrieved and a local copy is located at in:

/data/data/com.anki.victor/persistent/jdocs/ vic.RobotSettings .json

The file is specified in the “jdocs_config.json” file (see Chapter 17, section 72 JDocs Server) by

the “docName” key within the “ROBOT_SETTINGS” subsection. The “jdoc” field is a

RobotSettingsConfig structure with the following fields:

Field Type Description & Notes

button_wakeword ButtonWakeWord When the button is pressed, act as if this wake word (“Hey

Vector” vs “Alexa”) was spoken.

default: 0 (“Hey Vector”)

clock_24_hour boolean If false, use a clock with AM and PM and hours that run from 1 to

12. If true, use a clock with hours that run from 1 to 24.

default: false

default_location string default: “San Francisco, California, United States”

dist_is_metric boolean If true, use metric units for distance measures; if false, use

imperial units.

default: false

eye_color EyeColor The colour used for the eyes. The colour is referred to by one of

an enumerated set. (Within the SDK, the eyes can be set to a

colour by hue and saturation, but this is not permanent.)

default: 0 (TIP_OVER_TEAL)

locale strong The IETF language tag of the owner’s language preference –

American English, UK English, Australian English, German,

French, Japanese, etc.

default: “en-US”

master_volume Volume default: 4 (MEDIUM_HIGH)

temp_is_fahrenheit boolean If true, use Fahrenheit for temperature units; otherwise use

Celsius.58

default: true

time_zone string The “tz database name” for time zone to use for the time and

alarms.

default: “America/Los_Angeles”

The default values for each of the settings are held in:

/anki/assets/cozmo_resources/ config/engine/settings_config.json

(This path is hardcoded into libcozmo_engine.so.) The file is a JSON structure that maps each of

the fields of RobotSettingsConfig to a control structure. Each control structure has the following

fields:

58 Anyone else notice that metric requires a true for distance, but a false for temperature? Parity.

Table 568: The

RobotSettingsConfig

JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 436

Field Type Description & Notes

defaultValue The value to employ unless one has been given by the operator or

other precedent.

updateCloudOnChange boolean true if the value is pushed to the colour when it is changed by the

operator. False if not. Won’t be restored..?

It is implied that the setting value is to be pulled from the Cloud when the robot is restored after

clearing.

132. OWNER ENTITLEMENTS

An entitlement is a family of features or resources that the program or owner is allowed to use. It

is represented as set of key-value pairs. This is a concept that Anki provided provision for but was

not used in practice.

The only entitlement defined in Vector’s API (and internal configuration files) is “kickstarter eyes”

(JSON key “KICKSTARTER_EYES”). Anki decided not to pursue this, and its feature(s) remain

unimplemented.

The entitlement settings associated with the account (as opposed to the per-robot settings) are

stored in the cloud. The settings are retrieved and a local copy is located at in:

/data/data/com.anki.victor/persistent/jdocs/ vic.UserEntitlements .json

The file is specified in the “jdocs_config.json” file (see Chapter 17, section 72 JDocs Server) by

the “docName” key within the “ACCOUNT_SETTINGS” subsection. The default entitlement settings

are held in

/anki/assets/cozmo_resources/ config/engine/userEntitlements_config.json

(This path is hardcoded into libcozmo_engine.so.) The file is a JSON structure that maps each of

the entitlement to a control structure. The control structure is the same as Table 569: The setting

control structure, used in settings in the previous section.

133. VESTIGAL COZMO SETTINGS

The settings associated with the account (as opposed to the per-robot settings) are stored in the

cloud. The settings are retrieved and a local copy is located at in:

/data/data/com.anki.victor/persistent/jdocs/ vic.AccountSettings .json

The file is specified in the “jdocs_config.json” file (see Chapter 17, section 72 JDocs Server) by

the “docName” key within the “ACCOUNT_SETTINGS” subsection. The “jdoc” field is a structure

with the following settings:

Field Type Description & Notes

APP_LOCALE string The IETF language tag of the owner’s language preference –

American English, UK English, Australian English, German,

French, Japanese, etc.

default: “en-US”

DATA_COLLECTION boolean default: false

Table 569: The setting

control structure

Table 570: The

Cozmo account

settings

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 437

 The default “account settings” are held in:

/anki/etc/ config/engine/accountSettings_config.json

This path is hardcoded into libcozmo_engine.so and these settings are only read (possibly) by vic-

gateway. The file is a JSON structure that maps each of the settings to a control structure. The

control structure is the same as Table 569: The setting control structure, used in settings in an

earlier section.

134. FEATURE FLAGS

Vector has granular features that can be enabled and disabled thru the use of feature flags. Feature

flags allow the code to be deployed, and selectively enabled. As a software engineering practice, a

feature is usually is disabled because the feature is:

 not yet fully developed, or

 specific to a customer, or

 mostly developed and being tested in some groups, or

 only enabled when there is some error occurs or other functionality is not working

intended, or

 a special/premium function sold at a cost or reward (like an entitlement).

Many of these possibilities do not apply to Anki. But some do. Many of the disabled features are

probably disabled because they are incomplete, do not work, and likely not to work for without

further development.

134.1. CONFIGURATION FILE

The features flag configuration file is located at:

/anki/data/assets/cozmo_resources/ config/features.json

(This path is hardcoded into libcozmo_engine.so.) This file is organized as an array of structures

with the following fields:

Field Type Description & Notes

enabled boolean True if the feature is enabled, false if not

feature string The name of the feature

The set of feature flags and their enabled/disabled state can be found in Appendix I. The features

are often used as linking mechanisms of the modules. It is likely modules of behavior /

functionality.

134.2. COMMUNICATION INTERFACE TO THE FEATURES

The list of features can be queried with the GetFeatureFlagList command. The status of each

individual feature (whether it is enabled or not) can be found with the GetFeatureFlag query. See

Chapter 15 section 57 Features & Entitlements for more details.

Table 571: The

feature flag structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 438

135. ROBOT LIFETIME STATISTICS & EVENTS

Vector summarizes his experiences and activities into a set of fun measures. The intent is that they

can be shared as attaboys and a novel dashboard. They may also have been used in product

planning to prioritize new behaviors and firmware features, and next generation product needs.

The lifetime statics are updated by the robot and sent to the server; a local copy is located at in a

JSON file:

/data/data/com.anki.victor/persistent/jdocs/ vic.RobotLifetimeStats .json

The file is specified in the “jdocs_config.json” file (see Chapter 17, section 72 JDocs Server) by

the “docName” key within the “ROBOT_LIFETIME_STATS” subsection. The “jdoc” field holds a

structure with the following fields:

Key units Description & Notes

Alive.seconds seconds Vector’s age, since he was given preferences (a factory reset

restarts this)

Stim.CumlPosDelta The lifetime (cumulative) sensory score.

BStat.AnimationPlayed count The number of animations played

BStat.BehaviorActivated count

BStat.AttemptedFistBump count The number of fist bumps (attempted)

BStat.FistBumpSuccess count

BStat.PettingBlissIncrease

BStat.PettingReachedMaxBliss

BStat.ReactedToCliff count

BStat.ReactedToEyeContact count

BStat.ReactedToMotion count

BStat.ReactedToSound count

BStat.ReactedToTriggerWord count

Feature.AI.DanceToTheBeat

Feature.AI.Exploring

Feature.AI.FistBump

Feature.AI.GoHome

Feature.AI.InTheAir

Feature.AI.InteractWithFaces count The number of times recognized / interacted with faces

Feature.AI.Keepaway

Feature.AI.ListeningForBeats

Feature.AI.LowBattery

Feature.AI.Observing

Feature.AI.ObservingOnCharger

Feature.AI.Onboarding

Feature.AI.Sleeping

Feature.AI.Petting ms The amount of time petted

Table 572: The robot

lifetime stats schema

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 439

Feature.AI.ReactToCliff

Feature.AI.StuckOnEdge

Feature.AI.UnmatchedVoiceIntent

Feature.Voice.VC_Greeting

FeatureType.Autonomous

FeatureType.Failure

FeatureType.Sleep

FeatureType.Social

FeatureType.Play

FeatureType.Utility count The number of utilities used

Odom.LWheel mm The left wheel odometer – how far it has driven

Odom.Rwheel mm The right wheel odometer – how far it has driven

Odom.Body

Pet.ms ms The cumulative time petted

The statistics are retrievable by the application.

136. REFERENCES & RESOURCES

Wikipedia, List of tz database time zones,

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 440

CHAPTER 32

The Software Update

process

This chapter describes Vector’s software update process

 The software architecture

 The software update process

 How to extract official program files

137. THE ARCHITECTURE

The architecture for updating Vector’s software is:

Mobile App

OTA

updates

server

Mobile App

& Python

SDK

applications
/dev/socket/_switchboard_gateway_server

Vic-Gateway

Vic-Switchbox

update-engine

The Vic-Gateway and Vic-Switchbox both may interact with the mobile App and SDK programs to

receive software update commands, and to provide update status information. It is their

responsibility to ensure that Vector has met any preconditions for an update – that the battery is

charger, he is on the charger, the temperature is acceptable, and so on.

The update-engine is responsible for downloading the update, validating it, applying it, and

providing status information to Vic-Gateway and Vic-switchbox. The update engine can be initiated

by Vic-Switchbox via a Bluetooth LE command, or by HTTP command (see Chapter 15 section 67

Software Updates). [It isn’t known yet how they kick off the update automatically]. The update-

engine provides status information in a set of files with the “/run/update-engine” folder.

137.1. BODY-BOARD

The body-board firmware is updated during power on initialization. See Chapter 7 and 12 for a

little more information.

Figure 131: The

architecture for

updating Vector’s

software

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 441

137.2. THE COMPANION CUBE FIRMWARE

The cube firmware is updated (or downloaded if not present at all) when the Bluetooth LE

subsystem finds a cube. See Chapter 14 for details.

138. THE UPDATE FILE

The update files are TAR files with a suffix “OTA” (over the air update). The TAR file has a fixed

structure, with some of the files encrypted. There are 3 kinds of update files

 Factory updates. These modify the ABOOT, RECOVERY and RECOVERYFS partitions – the

aboot boot-loader, the recovery Linux kernel (and initramfs), and its file system.

 Production updates. These modify the BOOT, and SYSTEM partitions – the main Linux

kernel (and initramfs), and the file system.

 Delta updates. These modify the main file system partitions; by sending only the changes

to the underlying partitions, the updates can be very compact.

The archive contains 3 to 5 files, and they must be in the following order:

file name Description

manifest.ini This provides a description of which Vector units this update can be

applied to, a list of the update files, including their compression &

encryption schemes, and their signature.

manifest.sha256 This is a sha256 digest produced when the manifest is signed with

secret OTA key. This is used to ensure that the manifest is valid.

apq8009-robot-delta.bin.gz This holds the changes to the disk at a block level. This is present

only in delta updates. It is optionally encrypted.

apq8009-robot-
emmc_appsboot.img.gz

This provides a new ABOOT partition. This is present only in factory

updates. To unlock Vectors, making them developer units, the

modified (and signed) aboot is provided using this type of updater. It

is optionally encrypted.

apq8009-robot-boot.img.gz In factory updates it will be applied to the RECOVERY partition;

otherwise it will be applied to the BOOT partition. This is not present

in delta updates. It is optionally encrypted.

apq8009-robot-sysfs.img.gz In factory updates it will be applied to the RECOVERYFS partition;

otherwise it will be applied to the SYSTEM partition. This is not present

in delta updates. It is optionally encrypted.

138.1. MANIFEST.INI

The manifest.ini is checked by verifying its signature59 against manifest.sha256 using a secret key

(/anki/etc/ota.pub):

openssl dgst \
 -sha256 \
 -verify /anki/etc/ota.pub \
 -signature /run/update-engine/manifest.sha256 \
 /run/update-engine/manifest.ini

59 I’m using the information originally at: https://github.com/GooeyChickenman/victor/tree/master/firmware

Table 573: The

contents of an over-

the-air update archive

file

Example 8: Checking

the manifest.ini

signature

https://github.com/GooeyChickenman/victor/tree/master/firmware

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 442

Note: the signature check that prevents turning off encryption checks in the manifest below. At this

time the signing key is not known.

All forms of update have a [META] section. This section has the following structure:

Key Description

ankidev 0 if production release, 1 if development

manifest_version Acceptable versions include 0.9.2, 0.9.3, 0.9.4, 0.9.5, or 1.0.0

num_images The number of img.gz files in the archive. The number must match

that of the type of update file it is. 1, 2, or 3

qsn The Qualcomm Serial Number, it must match the robot’s serial

number. If there are three images (ABOOT, RECOVERY,

RECOVERYFS) present, the software is treated as a factory update.

Optional.

reboot_after_install 0 or 1. 1 to reboot after installing.

update_version The version that the system is being upgraded to, e.g. 1.6.0.3331

After the [META] section, there are 1 to 3 sections, depending on the type of update:

 A delta update has a [DELTA] section

 A regular update has a [BOOT], [SYSTEM] sections; both must be present.

 A factory update has [ABOOT], [RECOVERY], and [RECOVERYFS] sections; all 3 must be

present.

Each of these sections has the same structure:

Key Description

base_version The version that Vector’s software must be at in order to accept this

update. Honored only in delta updates. This prevents corrupting a

filesystem by ensuring that it has the expected layout.

bytes The number of bytes in the uncompressed archive

compression gz (for gzipped). This is the only supported compression type.

delta 1 if this is a delta update; 0 otherwise

encryption 1 if the archive file is encrypted; 0 if the archive file is not

encrypted.

sha256 The digest of the decompressed file must match this

wbits 31. Not used by update-engine

138.1.1 Version numbers

When performing version checks on the update file, looks at the number in update_version, the

suffix in the update_version and the ankidev field. The update-engine ensures that production

Vectors will not install software with the ankidev field set – and that developer Vector’s will not

install production software. (This is probably because production software won’t allow

development software to be installed on the unit.)

There are also subtle different kinds of development software. This is indicated in the suffix at

the end of the version string – blank, “d” or “ud”. The update-engine ensures that a Vector

Table 574:

manifest.ini META

section

Table 575:

manifest.ini image

stream sections

Wire/Kerigan

Creighton

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 443

cannot be changed from running software with one kind of suffix to another kind.

Type anki.dev suffix Description

developer 1 d This can include developer tools, such as SCP, SSH, AWK, a web

server, and a web-viz browser-based visualization application. It has

logging, simulation visualization, microphone processing information,

beat detection visualization, cloud intents, CPU usage statistics, etc.

production 0 This is the end-consumer released software. (The boot partition is

signed, and dmverity is enabled for the system partition.)

release candidate 1 This is almost identical to the production software releases, and is

likely used to test the units.

userdev 1 ud Some have SSH installed, but often do not include web-viz & web-

server.

138.2. HOW TO DECRYPT THE OTA UPDATE ARCHIVE FILES61

The OTA update archive files can be decrypted by:

openssl enc -d -aes-256-ctr -pass file:ota.pas -in apq8009-robot-boot.img.gz -out
apq8009-robot-boot.img.dec.gz
openssl enc -d -aes-256-ctr -pass file:ota.pas -in apq8009-robot-sysfs.img.gz -out
apq8009-robot-sysfs.img.dec.gz

To use OpenSSL 1.1.0 or later, add “-md md5” to the command:

openssl enc -d -aes-256-ctr -pass file:ota.pas -md md5 -in apq8009-robot-boot.img.gz -
out apq8009-robot-boot.img.dec.gz
openssl enc -d -aes-256-ctr -pass file:ota.pas -md md5 -in apq8009-robot-sysfs.img.gz -
out apq8009-robot-sysfs.img.dec.gz

Note: the password on this file is insecure (ota.pas has only a few bytes62) and likely intended

only to prevent seeing the assets inside of the update file. The security comes from (a) the

individual image files are signed (this is checked by the updater), and (b) the file systems that they

contain are also signed, and are checked by aboot and the initial kernel load. See Chapter 7 Startup

for the gory details.

Signing the files is a whole other kettle of fish.

139. THE UPDATE PROCESS

The update process checks for update:

 After 1st getting access to the internet

 On demand, via an HTTPS API command or a Bluetooth LE command

 Random intervals, between a few seconds and 1 hour.

 On demand, via the command line.

The update-engine-oneshot.service is used to initiate the first attempt to update after access to the

internet has been restored.

60 https://docs.google.com/document/d/1KZ93SW7geM0gA-LBXHdt55a9NR1jfKp7UZyqlRuokno/edit
61 https://groups.google.com/forum/#!searchin/anki-vector-rooting/ota.pas%7Csort:date/anki-vector-

rooting/YlYQsX08OD4/fvkAOZ91CgAJ
62 Opening up the file in a UTF text editor will show Chinese glyphs; google translate reveals that they say “This is a password”. This
password is a bit of humour to comply with a security consultant.

Table 576: Different

kinds of Vector software

updates
60

Example 9: Decrypting

the OTA update

archives

Example 10: Decrypting

the OTA update

archives with Open SSL

1.1.0 and later

https://docs.google.com/document/d/1KZ93SW7geM0gA-LBXHdt55a9NR1jfKp7UZyqlRuokno/edit
https://groups.google.com/forum/%23!searchin/anki-vector-rooting/ota.pas%7Csort:date/anki-vector-rooting/YlYQsX08OD4/fvkAOZ91CgAJ
https://groups.google.com/forum/%23!searchin/anki-vector-rooting/ota.pas%7Csort:date/anki-vector-rooting/YlYQsX08OD4/fvkAOZ91CgAJ

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 444

The /sbin/update-os can be used to initiate the software update process from the command-line on

developer units. This acts as if the vic-switchboard had initiated the download and install.

Downgrading is automatically enabled. This command is new to version 1.7.

139.1. STATUS DIRECTORY

The update-engine provides its status thru a set of files in the /run/update-engine folder.

File Description

done If this file exists, the OTA update process has completed, and the

system is preparing “to reboot into the new OS version.” This is

used to prevent “another OTA download and install in this case.”

error This file is set if there has been an error in the update process. The

error code representing why the update failed. See Appendix D,

Table 606: OTA update-engine status codes. It can also have a

value of “Unclean exit” by default.

expected-download-
size

The expected file size (the given total size of the OTA file) to

download.

expected-size In non-delta updates, the total number of bytes of the unencrypted

image files. This is the sum of the “bytes” field in the sections.

phase A short label indicating which phase of the update process it is in,

e.g “starting”, “sleeping”, “download”, and “done”

progress Indicates how many of the bytes to download have been completed,

or how much of the partitions have been written.

This folder also holds the unencrypted, uncompressed files from the OTA file:

 manifest.ini

 manifest.sha256

 delta.bin

 aboot.img

 boot.img

139.2. PROCESS

The update process works as follows; if there is an error at any step, skips the rest, deletes the bin

and img files.

1. Remove everything in the status folder

2. Being downloading the OTA file. It does not download the TAR and then unpack it. The

file is unpacked as it is received.

3. Copies the manifest.ini to a file in the status folder

4. Copies the manifest.sha256 to a file

5. Verifies the signature of the manifest file

6. Validates that the update to the OTA version is allowed. .

Note: the software can be downgraded by going into the recovery mode (running factory

software). The recovery mode does not check the version number or suffix. These checks

Table 577: update-

engine status file

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 445

were likely included (in the main software) to prevent any server bugs from accidentally

downgrading Vectors – wiping out bug fixes – at home.

Yes

No

No

Yes

Can down

grade?

Is

developer

unit?

Yes

Extract version

number & suffix

New version

> current

version #

New suffix

== current

suffx

No

No

Error 216 “Downgrade

from ... to … not allowed”

Error 216 “Update from

... to … not allowed”

Yes

Is

developer

unit?

Yes

No

Error 214 “Non-ankidev

OS can't install ankidev

OTA file”
Yes

Yes

Error 214 “Ankidev OS

can't install non-ankidev

OTA file”

Is “ankidev”

set in

manifest?

Is “ankidev”

set in

manifest?
No

continue

No

a) If this is a development Vector (i.e. anki.dev is set on the linux boot command line),

and the current software has UPDATE_ENGINE_ALLOW_DOWNGRADE internally set (to

true), the next two checks are skipped (until step d). Otherwise,

b) Does the suffix at the end of the version number in the new manifest match the suffix

in the currently running software? If not, a 216 error code is produced.

c) Is the new version number in the new manifest greater than the one in the currently

running software? If not, a 216 error code is produced.

d) The ankidev variable in the manifest must be set on developer units, and must not be

set on production units; otherwise a 214 error code is produced.

7. If this is factory update, it checks that the QSN in the manifest matches Vector’s QSN.

8. It marks the target partition slots as unbootable

9. Checks the img and bin contents

a) delta file

Figure 132: The

update-engine’s

version check process

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 446

b) boot & system archive files

c) If this is a factory update, aboot, recovery, and recoveryfs

10. If this is a factory update:

a) Creates the file /run/wipe-data. This will trigger erasing all of the user data (the

user data partition and the “switchboard” partition) when the system shutdowns

down to reboot.63

b) Makes both a and b slots for BOOT and SYSTEM partitions as unbootable

11. If this is not factory update

a) Sets the new target slot as active

12. Deletes any error file

13. Sets the done file

14. Posts a DAS event robot.ota_download_end to success + next version

15. If the reboot_after_install option was set, reboots the system

139.3. UPDATER CONFIGURATION

The update engine configuration files are located at:

/anki/etc/update-engine.env

/run/ update-engine-oneshot.env

/run/vic-switchboard/update-engine.env

This path is in the start-up /lib/systemd/system/update-engine.service file that starts the fault-

codes service. This file can have the following fields (if none are set, the fault-code-handler

reverts to these defaults):

Variable Default Description & Notes

UPDATE_ENGINE_ALLOW_DOWNGRADE false If true, older versions of the software can be installed thru

the updated; if false, they cannot be.

UPDATE_ENGINE_ANKIDEV_BASE_URL The URL to inquire for new update OTA files on

developer units; if set, overrides
UPDATE_ENGINE_BASE_URL

UPDATE_ENGINE_BASE_URL The URL to inquire for new update OTA files, when

UPDATE_ENGINE_URL is “auto”. The shard id and file

request is appended to this.

UPDATE_ENGINE_ENABLED Does not appear to be used

UPDATE_ENGINE_BASE_URL_LATEST

UPDATE_ENGINE_DEBUG false

UPDATE_ENGINE_OTA_TYPE diff

UPDATE_ENGINE_SHARD

UPDATE_ENGINE_URL auto The URL to request an update from. This is overridden by

a command line argument.

UPDATE_ENGINE_USE_SHARDING false

63 There is slight race condition here: the file to signal that the user data is in a tmpfs. It is possible that the other partitions could be

updated, and the system stops executing – has a kernel panic or loses power – before it gets to the step to wipe the data. This flag will
be gone when the system restarts.

Table 578: The

update-engine

configuration variables

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 447

139.4. MAINTENANCE REBOOT

Vector has a service – rebooter.service, which launches rebooter.py – to regularly reboot the

system, and to check for updates. This chooses a random time within a window (usually between 1

and 5AM) to reboot.

Why reboot so regularly? Vector was a new system with software initially (and hurriedly) ported

from mobile phone applications meant to be run only for a few hours. The longer a program runs,

the more likely a latent bug will cause it crash. The system software might have:

 Resource leaks: unreclaimed memory, accumulated temporary files, etc

 Race conditions

 Dead-locks

If that happens while being using it, the Vector’s applications might crash... or things limp along

with mysterious inconsistent behaviors, slowdowns, etc. By rebooting, these issues can be cleared

when no one is looking, and Vector can be played with much lower risk of a crash.

139.4.1 The logic to decide when to reboot

The time of the reboot is randomized… not because of what is going on around Vector

(presumably the world around him is asleep). The restart also triggers a check for an update to

download. By randomizing the reboot, it spreads the load on the OTA servers out over time.

Sanity checks before a reboot:

 It checks that a download of update – or installing one – is not already in progress

 It checks that the robot hasn’t rebooted too recently.

Other processes can request the reboot to not reboot by creating one the following files (and

removing it when no longer needing to delay):

/data/inhibit_reboot
/run/inhibit_reboot

Note: no program creates either of these files.

If those files do not exist, it checks to see if the updater has completed applying an update and is

waiting for the reboot. It does this be checking if the “/run/update-engine/done” exists. If it does

not exist, the robot will also check for the following:

 That processor is in power power-saving state. If not this indicates that it is perhaps active

and being used; this will trigger a delay

 If the updater is being run; if it is, this will also delay the reboot.

The reboot can only occur within a configurable time window. If the reboot is delayed until the

robot is outside of the time window, the reboot is skipped for the day.

When the reboot does occur, the rebooter creates the file /data/maintenance_reboot to indicate the

type of reboot to the start up scripts. The startup moves the file to /run/after_maintenance_reboot

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 448

139.4.2 The rebooter configuration file

The rebooter configuration file is located at:

/data/etc/rebooter.env

This path is in the start-up /etc/systemd/system/rebooter.service file that starts the rebooter

service. This file can have the following fields (if none are set, they revert to these defaults):

Variable Default Units Description

REBOOTER_EARLIEST 3600 seconds The earliest time that a reboot can occur. The time is

expressed in seconds after midnight. The default is 1

AM.

REBOOTER_INHIBITOR_DELAY 17 seconds The amount of time

REBOOTER_LATEST 18000 seconds The earliest time that a reboot can occur. The time is

expressed in seconds after midnight. The default is 5

AM.

REBOOTER_MINIMUM_UPTIME 14400 seconds The earliest time that a reboot can occur. The time is

expressed in seconds. The default is 4 hours.

REBOOTER_VERBOSE_LOGGING false boolean If true, extra messages are displayed to stdout.

That the configuration file was located in the user’s private file system indicates a potential per

robot configuration. The reboot time of day (etc) may have been intended (or at least considered)

to be a settable preference in the future.

140. RESOURCES & RESOURCES

https://source.android.com/devices/bootloader/flashing-updating

Describes the a/b process as it applies to android

Table 579: The

rebooter configuration

variables

https://source.android.com/devices/bootloader/flashing-updating

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 449

CHAPTER 33

Diagnostics

This chapter describes the diagnostic support built into Vector

 The customer care information screen

 The logging of regular use

 Crash logs

 Gathering usage, and performance data

141. OVERVIEW

Anki gathers “analytics data to enable and improve the services and enhance your gameplay…

Analytics Data enables us to analyze crashes, fix bugs, and personalize or develop new features

and services.” There are many services that accomplish the analytics services. This data is

roughly: logs, crash dumps and “DAS manager”

Logging and diagnostic messages are typically not presented to the owner, neither in use with

Vector or thru the mobile application... nor even in the SDK.

The exception is gross failures that are displayed with a 3-digit error code. This is intended to be

very exceptional.

Diagnostic and logging information is available thru undocumented interfaces.64

141.1. THE SOFTWARE INVOLVED

There are many different programs and libraries used in the diagnostic and logging area. The table

below summarizes of them:

Program / Library Description

animfail This program is started by the animfail service.

anki-crash-log Copies the last 500 system messages and the crash dump passed to the command

line to a given log file. This is called by vic-cloud, vic-dasmgr, vic-engine, vic-

gateway, vic-log-kernel-panic, vic-log-upload, vic-robot, vic-switchboard, and the

anki-crash-log service.

ankitrace This program wraps the Linux tracing toolkit (LTTng). This program is not present

in Vector’s file system. This is called by fault-code-handler.

cti_vision_debayer This is not called.

diagnostics-logger Bundles together several log and configuration states into a compressed tar file.

This is called by vic-switchboard, in a response to a Bluetooth LE log command.

displayFaultCode Displays error fault codes on the LCD. This is not called; see vic-faultCodeDisplay.

64 The lack of documentation indicates that this was not intended to be supported and employed by the public... at least not until other
areas had been resolved.

Table 580: Vector

diagnostic & logging

software

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 450

fault-code-clear This clears any pending or displayed faults (by deleting the relevant files). This

allows new fault code to be displayed. This is called by vic-init.sh. Located in
/bin

fault-code-handler This is called by the fault-code service. It listens for a fault code, initiates capturing

crash logs, and calls vic-faultCode to display the fault code. Located in /bin

librobotLogUploader.so Sends logs to cloud. This library is employed by libcozmo_engine, vic-gateway and

vic-log-upload.

libosState Used to profile the CPU temperature, frequency, load; the WiFi statistics, and etc.

This is used by libvictor_web_library, vic-anim, and vic-dasmgr.

libwhiskeyToF This unusually named library65 has lots of time of flight sensor diagnostics. This is

present only in version 1.6 and later. This library is employed by libcozmo_engine.

rampost This performs initial communication and version check of the firmware on the

body-board (syscon). This exists within the initial RAM disk, and is called by init.

vic-anim Includes the support for the Customer Care Information Screen. This is started by

the vic-anim service.

vic-crashuploader-init Removes empty crash files, renames the files ending in “.dmp~” to “.dmp”. This is

called by the vic-crashuploader service.

vic-crashuploader A script that sends crash mini-dump files to backtrace.io. This is called by the vic-

crashuploader service.

vic-dasmgr This is started by the vic-dasmgr service.

vic-faultCodeDisplay Displays error fault codes on the LCD. This is called by fault-code-handler.

vic-init.sh Takes the log messages from rampost and places then into the system log, forwards

any kernel panics. This is started by the vic-init service.

vic-log-cat Used to concatenate the logs from /var/log/messages.1.gz and /var/log/messages

vic-log-event A program that is passed an event code in the command line. This is called by

TBD.

vic-log-forward This is called by vic-init.sh

vic-log-kernel-panic This is called by vic-init.sh

vic-log-upload This is called by vic-log-uploader

vic-log-uploader “This script runs as a background to periodically check for outgoing files and

attempt to upload them by calling 'vic-log-upload'.” This is started by the vic-log-

uploader service.

vic-logmgr-upload “This script collects a snapshot of recent log data" into a compressed (gzip) file,

then uploads the file” and software revision “to an Anki Blobstore bucket.” This is

not called.

vic-on-exit Called by systemd after any service stops. This script posts the fault code

associated with the service (if another fault code is not pending) to fault-code-

handler for handling and display.

vic-powerstatus.sh Record every 10 seconds the CPU frequency, temperature and the CPU & memory

usage of the “vic-” processes. This is not called.

(Quotes from Anki scripts.) Support programs are located in /bin, /anki/bin, and /usr/bin

65 Anki has taken great care for squeaky-clean image, even throughout the internal files, so it was a surprise to see one that might appear

named after a rude acronym (WTF). The name is a result of the internal product codes: Whiskey was the code name for a new

generation of Cozmo in development. This was its time of flight (ToF) sensor library, using a modified Vector (called “Spiderface”) as
a development prototype. On Whiskey, the time of flight sensor would connect directly to the main processor.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 451

142. SPECIAL SCREENS AND MODES

Vector has 3 special screens and two special modes. The screens are

 A Customer Care Info Screen (CCIS) that can display sensor values and other internal

measures,

 A debug screen used to display Vector’s serial number (ESN) and IP address, and

 The fault code display which is used to display a 3-digit fault code when there is an

internal failure (this screen is only displayed if there is a fault, and can’t be initiated by an

operator.)

Vector has two special modes

 Entering recovery mode, to force Vector use factory software and download replacement

firmware. (This mode doesn’t delete any user data.)

 “Factory reset” which erases all user data, and Vector’s robot name

142.1. CUSTOMER CARE INFORMATION SCREEN

Customer Care Info Screen (CCIS). It has a series of screens that display sensor values and other

readings.

See https://www.kinvert.com/anki-vector-customer-care-info-screen-ccis/ for a walk thru

142.2. VECTORS’ DEBUG SCREEN (TO GET INFO FOR USE WITH THE SDK)

Steps to enter the debug screen

1. Place Vector on the charger,

2. Double-click his backpack button,

3. Move the arms up and down

This will display his ESN (serial number) and IP address. The font is much smaller than normal,

and may be hard to read.

142.3. DISPLAYING FAULT CODES FOR ABNORMAL SYSTEM SERVICE EXIT / HANG

If there is a problem while the system is starting or running – such as one of the services exits early

(e.g. crashes) , or it encounters an internal error – a fault code associated with that service is

displayed , and crash information is gathered for later analysis. See Appendix D for fault codes.

The implementation details will be discussed in section 145.6 Fault Code Handler below.

142.4. RECOVERY MODE

Vector includes a recovery mode that is used to force Vector to boot using factory software. The

recovery mode will not delete any user data or software that had previously been installed via

Over-The-Air (OTA) update.

https://www.kinvert.com/anki-vector-customer-care-info-screen-ccis/

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 452

The recovery mode is intended to help with issues such as Vector failing to boot up using the

regular firmware. He may have been unable to charge (indicated by teal Back Lights), or

encountered other software bugs66.

The application in the recovery mode attempts to download and reinstall the latest software. This

is likely done under the assumption that the firmware may be corrupted, or not the latest, and that a

check for corruption isn’t possible with the read-only filesystems of production software.

142.5. “FACTORY RESET”

Choosing the “Clear User Data” option in Vector’s CCIS erases all user data, including pictures,

faces, and API certificates & tokens. This also clears out the robot name. The Vector will be

given a new robot name when he is set up again.

The menu is implemented in the vic-anim program. When the Clear User Data menu option is

selected and confirmed, triggers the erasing all of the user data when the system shutdowns down

to reboot. First, it creates the file /run/wipe-data and then begins the shutdown and reboot

process. During the system shutdown, the mount-data service will detect the existence of the

/run/wipe-data file and erase the user data (/data) and the switchboard board partitions.

The name “factory reset” is slightly controversial, as this does not truly place Vector into an

identical software state as robot in the factory.

143. BACKPACK LIGHTS

The lights on the backpack are primarily set by Vic-robot, but driven by the body-board. If the

body-board firmware (syscon) is unable to communicate with Vic-robot, the body-board will set the

lights on its own.

144. DIAGNOSTIC COMMANDS

There are several HTTPS commands that are useful for diagnosing errors:

· The connectivity with the cloud can be checked to see if the servers can be reached, if the

authentication (i.e. username and password) is valid, if the server certificate is valid. See

Chapter 15, section 54.1 Check Cloud Connection

· The debug logs can be requested to be sent to the server for analysis. See the Upload

Debug Logs command in Chapter 15, section 54.2 Upload Debug Logs

145. LOGS

Acquiring Logs

 Logs can be downloaded to a PC or mobile application using the Bluetooth LE API

 The logs can be sent to the server using the Upload Debug Logs API command. See

Chapter 15 section 54.2 Upload Debug Logs

 Logs are gathered when a fault-code is raised

 Logs are gathered when an Anki program crashes

66 The web page says that are “indicated by a blank screen. If you get a status code between 200-219, recovery mode will also help.”

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 453

145.1. GATHERING LOGS, ON DEMAND

The logs can be requested by issuing a log fetch command via Bluetooth LE. Vic-switchboard

handles the request, delegating the preparation of the log files to diagnostics-logger.

/data/diagnostics
diagnostics-

logger

Bluetooth

LE App

vic-

switchboad

This utility gathers the following files, archives and compresses them:

File Description

connman-services.txt connmanctl services

dmesg.txt Executes dmesg and captures the standard output.

ifconfig.txt Executes ifconfig wlan0 and captures the standard output.

iwconfig.txt Executes iwconfig wlan0 and captures the standard output.

log.txt Concatenates /var/log/messages.1.gz (uncompressed) and
/var/log/messages

netstat-ptlnu.txt Executes netstat -ptlnu and captures the standard output.

ping-anki.txt Ping’s anki.com for connectivity and latency.

ping-gateway.txt Looks up the IP address (using netstat) of the gateway that Vector

is using and pings it for connectivity and latency.

ps.txt Process stats (ps) of Anki’s “Vic” processes

top.txt Executes top -n 1 and captures the standard output.

This utility is triggered by:

 Vic-switchboard when issued a log fetch command (via Bluetooth LE).

 Vic-gateway when the upload log command is issued

 Other

145.2. VIC-LOGMGR-UPLOAD

The vic-logmgr-upload script is not used, but it instructive to examine. When called it copies all of

the messages from /var/log/messages.1.gz and /var/log/messages then sends the compressed

result to the URL given on the command line.

/data/data/

com.anki.victor/

cache/vic-logmgr

vic-logmgr-

upload
vic-log-cat

Anki

blobstore

Figure 133: The

Bluetooth LE based

diagnostics-logger

process

Table 581: Files in the

diagnostics log archive

Figure 134: The vic-

logmgr-upload log

uploader

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 454

145.3. GATHERING LOGS, REGULARLY

The vic-log-uploader service regularly checks for log files to send to a server. The fault code and

crash handlers may place log files into an outgoing folder to be uploaded. The outgoing folder is in

non-volatile memory, so they can be waiting for a reboot before they are sent, if the robot loses

power, has a serious fault, or network access isn’t available.

vic-log-

uploader

/data/data/

com.anki.victor/

cache/outgoing

vic-log-

upload
AWS

The log uploader configuration file is located at:

/anki/etc/vic-log-uploader.env

This path is in the start-up /lib/systemd/system/vic-log-uploader.service file that starts the log

uploader service. This file can have the following fields (if none are set, the log uploader reverts to

these defaults):

Variable Default Description & Notes

VERBOSE 0 If set to 1, extra debugging messages are logged.

VIC_LOG_UPLOADER_FOLDER The path on the local file system to store the logs until they can

be uploaded.

VIC_LOG_UPLOADER_QUOTA_MB 10 The maximum allowed total size of the log files to leave in the

upload folder; the oldest files are removed until the total size is

less than (or equal) to this.

VIC_LOG_UPLOADER_SLEEP_SEC 30 The amount of time between checks for log files.

145.4. OPTING INTO (AND OUT OF) UPLOADING LOGS AND DAS EVENTS

The fault handler and crash uploader also checks for the existence of the following file before

passing logs to vic-log-uploader:

/run/das_allow_upload

This file is intended to indicate – to only exist – if the user accepts uploading diagnostic

information, and to not exist if they have opted out of data collection. If this exists, the crash

minidump traces and log files are captured by fault-crash-handler and the log files are captured vic-

crashuploader, and passed to be uploaded. If it does not exist, the log files are not captured or

uploaded. (vic-crashuploader uploads the crash minidumps either way, but will only included the

logs files allowed.)

This file is created by the DAS-manager (more on its event collection later).

/data/data/com.anki.victor/persistent/dasGlobals.json

This path is specified by the DASConfig.json (more on that in a later section).

This JSON file is a structure with a single key: “dasGlobals”. This in turn dereferences to a

structure with the following fields:

Variable Type Description & Notes

allow_upload boolean If true, the file will be created, and uploads are allowed

Figure 135: The vic-

log-uploader log

upload pipeline

Table 582: The log

uploader configuration

variables

Table 583: The DAS

preferences variables

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 455

profile_id string The Base-64 identifier for the account. If there is no account, it

is an identifier that is made by other means.

This file appears to be downloaded from the JDocs store.

145.5. KERNEL ACTIVITY TRACING (LTTNG)

Vector 1.7 started the use of the Linux Trace Toolkit NG (LTTng). LTTng is configured by the

ankitrace.service to record a variety of events – syscalls, kernel switch, CPU frequency, IRQ’s,

kernel memory management, custom events emitted by Anki programs, and so on. The Anki

applications also register a few probes to add to the traces as they execute.

When a fault occurs, the record of activity is saved for later examination.

Both the service to start the tracing, and to record (on demand) a snapshot of the trace are handled

by the ankitrace script.

145.6. FAULT CODE HANDLER

A fault code can be posted to the fault code handler by a service, based on errors it detects. More

often, a fault code is sent by systemd if one of the service processes it started exits unexpectedly.

The fault code handler receives this code, captures diagnostic information to pass on to Anki

developers to prevent further problems in the future, and invokes vic-faultCodeDisplay to display

the 3 digit code. It then (optionally) restarts the Vic services, or allows the body-board to turn the

system power off, after giving enough time for a person to read the code.

vic-cloud

vic-anim

vic-robot

vic-

faultCodeDisplay

fault-code-

handler
vic-on-exitsystemd LCD display

/data/data/

com.anki.victor/

cache/outgoing

Capture kernel

trace

The fault code is sent by writing a string with the fault code to the FIFO file located at:

/run/fault_code

The fault code handler configuration file is located at:

/anki/etc/fault-code-handler.env

This path is in the start-up /lib/systemd/system/fault-code.service file that starts the fault-codes

service.

This configuration file can have the following fields (if none are set, the fault-code-handler reverts

to these defaults):

Variable Default Description & Notes

FAULT_RESTART_COUNT 0 The default count for the number of restarts. The count of

Figure 136: The fault-

code-handler process

Table 584: The fault

code handler

configuration variables

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 456

restarts is loaded from the /run/fault_restart_count file.

FAULT_RESTART_LIMIT 2 Automatic restarts are allowed only if the restart count is less

than this.

FAULT_RESTART_LIMIT_SEC 60 The restart count is cleared after this amount of time has passed.

the /run/fault_restart_count

ON_FAULT_RESTART 0 If set to 1, “Vector will restart” is displayed. Then Vector will

restart (if it hasn’t restarted too many times recently)

ON_FAULT_UPLOAD_LOG 0 If greater than 0, the log data is captured. If this is a developer

build, the log is left on disk; if it isn’t the log is compressed and

placed in the outgoing path.

ON_FAULT_UPLOAD_TRACE 0 If greater than 0, the trace data is captured. If this is a developer

build, the log is left on disk; if it isn’t the log is compressed and

placed in the outgoing path.

TIMEOUT_SIGTERM_SEC 3 This is the period of time to wait for services to stop before

sending them a SIGTERM signal.

TIMEOUT_RESTART_SEC 5 If restarting, wait this number of seconds before initiating the

system restart command.

VERBOSE 0 If set to 1, extra debugging messages are logged.

The fault-code-handler process works as follows:

1. The /run/fault_code FIFO is created by the fault-code.socket service.

2. When there is any input on the FIFO, systemd launches the corresponding fault-

code.service. This launches fault-code-handler with its stdin set to read from the FIFO.

3. Then a line of text is read from the /run/fault_code FIFO, and cleaned up to only contain

only digits. If there are no digits – or the fault code is 0 – it exits.

4. The handler checks to see if the /run/fault_code.pending exists. If so, it exits. This file is

used to tell if the fault-code-handler still handling a fault, possibly while waiting for the

system to be powered off by the body-board.

5. It begins the process of capturing diagnostic traces, and logs for later analysis of the fault;

6. The system services are stopped; depending on the classification of the fault, this may stop

all, or just a few.

7. Updates the counts of restarts, and checks the limit

8. The handler checks to see if /run/fault_code.showing exists. If the

/run/fault_code.showing file exists, the fault display is already showing and another will

not be shown. Otherwise,

a. Then the vic-faultCodeDisplay is executed to display the fault code. The fault

code is passed on the command line.

b. The fault code is placed into /run/fault_code.showing

9. If uploading is enabled, the fault report and diagnostic LTTng traces are copied to the

outgoing queue area.

10. It also takes care to clear out the FIFO.

11. Attempt to restart the system services, after a delay – if that is allowed with this fault

classification, and there have not been too many restarts in an attempt to clear the error.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 457

The handler counts the number of restarts (of the system services) within a time window; if

there have too many restarts, another one is not performed.

a. If a restart is not allowed, the body-board will eventually power off the system.

12. The /run/fault_code.pending file is removed.

The following files are employed by the fault code handler:

File Description

/run/fault_code.pending The “pending” file allows a second fault – a second attempt to run

fault-code-handler after it has already displayed a fault, but not

been cleared by the restart of the system services. It will still trap

the trace of diagnosticsevents, and may trigger further restarting of

services – or stopping them, forcing the body-board to eventually

remove power.

/run/fault_code.showing The existence of this file is used to allow only a single fault code

to be displayed. It is set to the fault code being displayed.

/run/fault_restart_count This is incremented with each restart, and cleared by a reboot.

/run/fault_restart_uptime This captures the time of the last restart of system services. It is

used to tell if enough time has passed to reset the restart counter.

145.7. CRASH LOGS

The Anki applications are set up to produce small information files when the application crashes.

This is done by the applications using Google breakpad toolkit, which hooks several of the

applications emergency exit signals. When the application crashes, the toolkit captures the key

information in minidump files, which are optionally sent to backtrace.io for analysis.

The vic-crashuploader service regularly checks for log files to send to a server. The outgoing logs

are in non-volatile memory, so they can be waiting for a reboot before they are sent, if the robot

loses power, has a serious fault, or network access isn’t available.

vic-crash

uploader

/data/data/

com.anki.victor/

cache/crashDumps

backtrace.io

The vic-crashuploader configuration file is located at:

/anki/etc/vic-crashuploader.env

This path is in the start-up /lib/systemd/system/vic-crashuploader.service file that starts the fault-

codes service.

This file can have the following fields (if none are set, the crash uploader reverts to these defaults):

Variable Default Description & Notes

VIC_CRASH_FOLDER The path to store crash dump files in

VIC_CRASH_SCRAPE_PERIOD_SEC 30 The number of seconds to sleep between cycles of looking for

crash files to upload.

VIC_CRASH_UPLOADER_KEEP_LAT
EST

30 The maximum number of crash files to retain; older files are

deleted.

Table 585: Fault code

handler files.

Figure 137: The vic-

crashuploader pipeline

Table 586: The crash

uploader configuration

variables

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 458

VIC_CRASH_UPLOAD_LOG 0 If greater than zero, the log files are also uploaded.

VIC_CRASH_UPLOAD_URL The URL to upload the crash dump files to

The anki-crash-log process works as follows:

1. The anki-crash-log.socket service creates a FIFO file called:

/run/anki-crash-log

2. The anki-crashuploader.service removes old files from the VIC_CRASH_FOLDER and

launches vic-crashuploader.

3. When an Anki application crashes, the breakpad toolkit creates a minidump file in the

VIC_CRASH_FOLDER., then it posts the path to the FIFO file

4. When there is any input on the FIFO, systemd launches the corresponding anki-crash-

log.service. This launches anki-crash-log script with its stdin set to read from the FIFO.

5. This script reads a line of text from the /run/anki-crash-log FIFO, and copies the last 400

messages the system log to file in the same directory.

6. Periodically anki-crashuploader wakes (every VIC_CRASH_SCRAPE_PERIOD_SEC seconds)

and, if upload is allowed, TBD, uploads the file to VIC_CRASH_UPLOAD_URL. (See chapter

17 for more details.)

7. All but the newest VIC_CRASH_UPLOADER_KEEP_LATEST crash files are removed.

146. CONSOLE FILTER

The logging by functional blocks (primarily in Vic-engine) can be configured. The logging

configuration file is located at:

/anki/data/assets/cozmo_resources/ config/engine/console_filter_config.json

This file is organized as dictionary whose key is the host operating system. The “vicos” key is the

one relevant for Vector.67 It dereferences to a structure with the following fields:

Field Type Description & Notes

channels array An array of the channel logging enable structures

levels array An array of logging level enable structures

 This “channels” is as an array of structures with the following fields:

Field Type Description & Notes

channel string The name of the channel

enabled boolean True if should log information from the channel, false if not.

67 The other OS key is “osx” which suggests that Vector’s software was development on an OS X platform.

Table 587: The

console filter channel

structure

Table 588: The

channel logging

enable structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 459

This “levels” is an array of structures with the following fields:

Field Type Description & Notes

enabled boolean True if should log information at that level, false if not.

level string “event” or “debug”

The features are used as linking mechanisms of the modules. It is likely modules of behavior /

functionality. It is not clear how it all ties together.

Channel enabled Description & Notes

Actions false

AIWhiteboard false

Alexa false

Audio false

Behaviors false

BlockPool false

BlockWorld false

CpuProfiler true

FaceRecognizer false

FaceWorld false

JdocsManager true

MessageProfiler true

Microphones false

NeuralNets false

PerfMetric true

SpeechRecognizer false

VisionComponent false

VisionSystem false

* false

Table 589: The

logging level enable

structure

Table 590: The

channels

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 460

147. USAGE STUDIES AND PROFILING DATA

Anki had ambitions to perform engagement studies and experiments with device settings:

“The Services collect gameplay data such as scores, achievements, and feature usage. The

Services also automatically keep track of information such as events or failures within

them. In addition, we may collect your device make and model, an Anki-generated

randomized device ID for the mobile device on which you run our apps, robot/vehicle ID

of your Anki device, ZIP-code level data about your location (obtained from your IP

address), operating system version, and other device-related information like battery level

(collectively, “Analytics Data”).”

The DAS manager protocol’s version identifier dates to the development of Overdrive. One patent

on their “Adaptive Data Analytics Service” is quite an ambitious plan to tune an improve systems.

“A closed-loop service, referred to as an Adaptive Data Analytics Service (ADAS),

characterizes the performance of a system or systems by providing information describing

how users or agents are operating the system, how the system components interact, and

how these respond to external influences and factors. The ADAS then builds models and/or

defines relationships that can be used to optimize performance and/or to predict the results

of changes made to the system(s). Subsequently, this learning provides the basis for

administering, maintaining, and/or adjusting the system(s) under study. Measurement can

be ongoing, even after the operating parameters or controls of a system under the

administration or monitoring of the ADAS have been adjusted, so that the impact of such

adjustments can be determined. This recursive process of observation, analysis, and

adjustment provides a closed-loop system that affords adaptability to changing operating

conditions and facilitates self-regulation and self-adjustment of systems.”

There is no information on whether this was actually accomplished, or that these techniques were

used in Cozmo or Vector. Anki developed “both batch and real-time dashboards to gain insights

over device and user behavior,” according to their Elemental toolkit literature.

147.1. EVENT TRACING

The DAS manager on Vector and the mobile application posts event such as when an activity

begins, key milestones along the way, and when the activity ends. The events can include extra

parameters such as text and values. In the case of the mobile application, this is the name of each

button pressed, screen displayed, error encountered, and so forth.

Speculated purpose:

 To identify how far people got in a process, or what their flow thru an interaction is

 To estimate durations of activities, such as onboarding, how long Vector can play between

charge cycles, and how long a charge cycle is.

 To identify unusual events (such as errors).

 May allow detailed reconstruction of the setup, configuration and interaction

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 461

The event naming pattern is [module name].[some arbitrary name]. When these are logged in

Vector’s text log files they are prefixed with an ‘@’ symbol.68 For examples of DAS events, see

Appendix L.

The vic-dasmgr configuration file is located at:

/anki/data/assets/cozmo_resources/ config/DASConfig.json

This path is in the vic-dasmgr executable. This file can have the following fields:

Variable Default Description & Notes

backup_path

backup_quota 10000000

file_threshold_size 1000000

flush_interval 600

persistent_globals_path

storage_path /run/das
Logs

storage_quota 5000000

transient_globals_path

url The URL to upload the DAS files to

147.2. DAS

The DAS engine uploads JSON files. Each file holds an array of structures with the following

fields:

Field Type Description & Notes

boot_id string

event string The name of the event/error that occurred, or the type of stats

loggedy. Sometimes the event is generic – as with “log.error” –

so the s1 field needs to be examined. Spaces should be trimmed

from the start and end of the field. Some event names are

accidentally logged with a trailing space (e.g.

“rampost.dfu.desired_version”).

feature_run_id string

feature_type string

i1 int64 Extra information, in integer format. Note, for at least one kind

of entry the value domain is 64-bits.

i2 int Extra information, in integer format.

i3 int Extra information, in integer format.

i4 int Extra information, in integer format.

level string “info”, “warning”, “error”, etc.

profile_id string The account profile id... probably tied to jdocs, and token

68 This is a very helpful feature

Table 591: The DAS

manager configuration

variables

Table 592: The DAS

event JSON structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 462

manager; “unless you create an account and log in, Analytics

Data is stored under a unique ID and not connected to you.”

robot_id string The robot’s electronic serial number.

robot_version string The software version.

s1 string Extra information, in string format.

s2 string Extra information, in string format.

s3 string Extra information, in string format.

s4 string Extra information, in string format.

seq int The event sequence number. It appears that each event on the

robot increments this number. This can be helpful for spotting

missing events.

source string The module that submitted the event... e.g. vic-engine

ts uint64 Time stamp, in milliseconds since 1970 Jan 1 (the start of the

epoch)

uptime_ms int How long it’s been since the operating system has rebooted.

This record is generic enough that it can hold each of the events in this form. Not every field is

used every time, and not necessarily used in the same way.

147.3. PROFIILING AND LIBOSSTATE

The tools in Vector gather a variety of diagnostic information about:

 Basic information about the robot – the version of software it is running, and what the

robot’s identifier/serial number is.

 Whether Vector is booted into recovery mode when it is sending the information.

 The uptime – how long Vector has been running since the last reboot or power on.

 The WiFi performance, to understand the connectivity at home since Vector depends so

heavily on cloud connectivity for his voice interactions.

 The CPU temperature profile, to find the balance between overheating and AI

performance. Some versions and features of Vector can cause faults due to the processor

overheating. Anki probably wanted to identify unusual temperatures and whether their

revised settings addressed it.

 The CPU and memory usage statistics for the “vic-” application services. Anki probably

sought to identify typical and on unusual processing loads and heavy use cases.

 The condition of the storage system – information about the flash size & partitions,

whether the user space is “secure”, and whether the EMR is valid.

Speculated purpose: To identify typical and on unusual processing loads and temperatures. The

heavy uses cases are likely undesired and would be something to identify.

The data gather in Vector for these is primarily based in a library called libosState.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 463

147.3.1 WiFi Stats

libosState gathers the following information about the WiFi network:

 The WiFi MAC address

 The WiFi SSID (and flagged if it isn’t valid)

 The assigned IP Address (and flagged if it isn’t valid)

 The number of bytes received and sent

 The number of transmission and receive errors

The key files employed to access this information:

File Description

/sys/class/net/wlan0/address The IP address assigned to Vector

/sys/class/net/wlan0/statistics/rx_bytes The number of bytes received

/sys/class/net/wlan0/statistics/rx_errors The number of receive errors

/sys/class/net/wlan0/statistics/tx_bytes The number of transmit errors

/sys/class/net/wlan0/statistics/tx_errors The number of bytes sent

How this is used: to get a sense of WiFi connectivity in the home, and rooms where Vector is

used. Anki’s internal research showed that rooms in a home can have a wide range of

connectivity characteristics.

147.3.2 CPU stats

libosState gathers the following information about the CPU temperature:

 The CPU temperature

 The CPU target and actual frequency

 Whether the CPU is being throttled

 The limits set on the CPU frequency

The key files employed to access this information:

File Description

/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq The current frequency of the CPU.

/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq The maximum frequency the CPU is allowed to run

at.

/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

/sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

/sys/devices/virtual/thermal/thermal_zone3/temp The current temperature of the CPU.

How this is used: This information was probably intended to find the balance between overheating

and AI performance.

Table 593: The WiFi

related stats /proc files

Jane Fraser, 2019

Table 594: Named

device and control

files

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 464

147.4. EXPERIMENTS

There is an experiments file; this is in libcozmo-engine as well. Cozmo’s APK has a file with the

same structure. The file has the following high-level structure:

Field Type Description & Notes

meta meta structure A structure that describes what project the experiment applies to

and the versioning info of the structure.

experiments array of
experiment
structures

An array of experiments, each with their own conditions and

parameters.

The meta structure has the following fields:

Field Type Description & Notes

project_id string “cozmo”69

revision int 1

version int 2

The experiment can be run for a bounded period of time, with an optional period that the

experiment is paused (perhaps for holidays). An experiment structure has the following fields:

Field Type Description & Notes

activation_mode string “automatic”

audience_tags array of TBD

forced_variations array of TBD

key string “report_test_auto”

pop_frac_pct int Portion of the population, as a percentage, that will take part in

this experiment.

pause_time_utc_iso8601 string The time at which to pause the experiment.

resume_time_utc_iso8601 string The time at which to resume the experiment after pausing.

start_time_utc_iso8601 string The date and time that the experiment will commence.

stopt_time_utc_iso8601 string The date and time that the experiment will end.

variations array of variation

version int 0

A variation structure has the following fields:

Field Type Description & Notes

key string One of at least two populations subject to the test: “control” or

“treatment”

pop_fract_pct int Portion of the population, as a percentage, that will be in this

subject group.

69 I suspect that this would have changed once experiments were initiated with Vector

Table 595: The

experiments TBD

structure

Table 596: The meta

JSON structure

Table 597: The

experiment JSON

structure

Table 598: The

variation JSON

structure

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 465

148. REFERENCES & RESOURCES

Anki, Privacy policy, 2018 Oct 5

https://anki.com/en-us/company/privacy.html

DeNeale, Patrick; Tom Eliaz; Adaptive data analytics service, Anki, USPTO

US9996369B2, 2015-Jan-05

Google, Getting started with breakpad

https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/getting_started_with_b

reakpad.md

This gives an overview of the break pad process of capture crash information as mini dumps,

and forwarding it to centralize servers for analysis

The LTTng Project, The LTTng Documentation, 2020 Aug 5

https://lttng.org/docs/v2.12/

Microsoft, minidump files

https://docs.microsoft.com/en-us/windows/win32/debug/minidump-files

https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/

Built on — extending slightly — the mini dump format developed by Microsoft

os-release — Operating system identification

https://www.freedesktop.org/software/systemd/man/os-release.html

Describes the /etc/os-version and /etc/os-version-rev files

https://anki.com/en-us/company/privacy.html
https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/getting_started_with_breakpad.md
https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/getting_started_with_breakpad.md
https://lttng.org/docs/v2.12/
https://docs.microsoft.com/en-us/windows/win32/debug/minidump-files
https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/
https://www.freedesktop.org/software/systemd/man/os-release.html

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 466

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 467

References &

Resources

Note: most references appear in the margins, significant references will appear at the end of their

respective chapter.

149. CREDITS
Credit and thanks to Anki who made Vector possible; C0RE, Melanie T for access to the flash

partitions, file-systems, decode keys, board shots, unusual LED codes, information on the

electronics, and OTA URLs. Wire/Kerigan Creighton for board shots, the Project Victor website

& public relations, finding the web-visualization tool, OTA URLs, identifying the valuable OTA

versions, checking the compatibility with Cozmo animations and fun with boot animations. Fictiv

for board shots. (The board shots helped identify parts on the board and inter-connection on the

board.) GooeyChickenman for the github repository. Cyril Peponet for aboot analysis, finding

OTA v1.7, and pointing me valuable past discord postings. Alexander Entinger for body-board

connector signal information. Paul Brett for Cube Bluetooth LE information. HSReina for Vector

Bluetooth LE protocol information. Wayne Venables for crafting a C# version of the SDK.

Silvarius/Silvarius613 & nammo for info on the other Anki products that were under development.

nammo for information on error codes, shaft encoders, battery life, signal processing, and much

more. Ben Gabaldon for information on Wwise craftsmanship. Mike Huller for catching several

typos. Thanks to Mike Corlett for helping me understand more of the token passing scheme.

Several drawings were adapted from Steph Dere, and Jesse Easley’s twitter & instagram.

Thank-you Frien and Wire for posting JSON intents, and keeping the communities together.

Cyke for alerting people to interesting updates.

Thank-you to Digital Dream Labs (DDL) for continuing support for Vector; DDL and Drew

Zhrodague for providing error tables and cloud information.

150. REFERENCE DOCUMENTATION AND RESOURCES

150.1. ANKI

Anki, Vector Quick Start Guide, 293-00036 Rev: B, 2018

Anki, Vector Pillars, 2018

Casner, Daniel, Sensor Fusion in Consumer Robots, Embedded Vision Summit, 2019 May

https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-

vision-training/videos/pages/may-2019-embedded-vision-summit-casner

https://www.youtube.com/watch?v=NTU1egF3Z3g

Casner, Daniel; Lee Crippen, Hanns Tappeiner, Anthony Armenta, Kevin Yoon; Map Related

Acoustic Filtering by a Mobile Robot, Anki, US Patent 0212441 A1, 2019 Jul 11

Fraser, Jane, IoT: How it Changes the Way We Test, Spring 2019 Software Test Professionals

Conference, 2019 Apr 3

https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/videos/pages/may-2019-embedded-vision-summit-casner
https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/videos/pages/may-2019-embedded-vision-summit-casner
https://www.youtube.com/watch?v=NTU1egF3Z3g

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 468

https://spring2019.stpcon.com/wp-content/uploads/2019/03/Fraser-IoT-How-it-changes-the-

way-we-test-updated.pdf

Jameson, Molly; Daria Jerjomina; Cozmo: Animation pipeline for a physical robot, Anki, 2017

Game Developers conference

Kaiser (Anki), (Cozmo) Code Lab Block Glossary, 2017 Dec

https://forums.anki.com/t/code-lab-block-glossary/10958

Stein, Andrew; Making Cozmo See, Embedded Vision Alliance, 2017 May 25

https://www.slideshare.net/embeddedvision/making-cozmo-see-a-presentation-from-anki

https://youtu.be/Ypz7sNgSzyI

150.2. OTHER

cozmopedia.org

Crowe, Steven, Anki was developing security robots before shutdown, The Robot Report, 2020 Feb

25

https://www.therobotreport.com/anki-developing-security-robots-before-shutdown/

Easley, Jesse

https://fatralla.tumblr.com/

FCC ID 2AAIC00010 internal photos

https://fccid.io/2AAIC00010

FCC ID 2AAIC00011 internal photos

https://fccid.io/2AAIC00011

FPL, FlatBuffers

https://google.github.io/flatbuffers/

Kinvert, Anki Vector Customer Care Info Screen (CCIS)

https://www.kinvert.com/anki-vector-customer-care-info-screen-ccis/

Sriram, Swetha, Anki Vector Robot Teardown, Fictiv, 2019 Aug 6

https://www.fictiv.com/blog/anki-vector-robot-teardown

Tenchov, Kaloyan; PyCozmo

https://github.com/zayfod/pycozmo/tree/master/pycozmo

Venable, Wayne; Anki.Vector.SDK

https://github.com/codaris/Anki.Vector.SDK

https://github.com/codaris/Anki.Vector.Samples

https://weekendrobot.com/

Zaks, Mazim FlatBuffers Explained, 2016-Jan-30

https://github.com/mzaks/FlatBuffersSwift/wiki/FlatBuffers-Explained

150.3. QUALCOMM
Although detailed documentation isn’t available for the Qualcomm APQ8009, there is

documentation available for the sibling APQ8016 processor.

Qualcomm, APQ8016E Application Processor Tools & Resources,

https://developer.qualcomm.com/hardware/apq-8016e/tools

Qualcomm, DragonBoard™ 410c based on Qualcomm® Snapdragon™ 410E processor ADB

Debugging Commands Guide, LM80-P0436-11, Rev C, 2016 Sep

lm80-p0436-11_adb_commands.pdf

Qualcomm, DragonBoard™ 410c based on Qualcomm® Snapdragon™ 410E processor Software

Build and Installation Guide, Linux Android, LM80-P0436-2, Rev J, 2016 Dec

lm80-p0436-2_sw-build-and-install_gd_linux_android_dec2016.pdf

https://spring2019.stpcon.com/wp-content/uploads/2019/03/Fraser-IoT-How-it-changes-the-way-we-test-updated.pdf
https://spring2019.stpcon.com/wp-content/uploads/2019/03/Fraser-IoT-How-it-changes-the-way-we-test-updated.pdf
https://forums.anki.com/t/code-lab-block-glossary/10958
https://www.slideshare.net/embeddedvision/making-cozmo-see-a-presentation-from-anki
https://youtu.be/Ypz7sNgSzyI
http://cozmopedia.org/
https://www.therobotreport.com/anki-developing-security-robots-before-shutdown/
https://fatralla.tumblr.com/
https://fccid.io/2AAIC00010
https://fccid.io/2AAIC00011
https://google.github.io/flatbuffers/
https://www.kinvert.com/anki-vector-customer-care-info-screen-ccis/
https://www.fictiv.com/blog/anki-vector-robot-teardown
https://github.com/zayfod/pycozmo/tree/master/pycozmo
https://github.com/codaris/Anki.Vector.SDK
https://github.com/codaris/Anki.Vector.Samples
https://weekendrobot.com/
https://github.com/mzaks/FlatBuffersSwift/wiki/FlatBuffers-Explained

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 469

Appendices

Robots enjoy large, properly-formatted data files (and flowers from their sweetie). We can’t

replicate large files here but we can give large, well-formatted tables telling where to find those

large data files, and consolidating other useful details – details that would distract from the main

narrative.

 ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of terms,

abbreviations, and acronyms.

 TOOL CHAIN. This appendix lists the tools known or suspected to have been used by Anki to

create, and customize the Vector, and for the servers. Tools that can be used to analyze

Vector.

 ALEXA MODULES. This appendix describes the modules used by the Alexa client

 FAULT AND STATUS CODES. This appendix provides describes the system fault codes, and

update status codes.

 BODY-BOARD CONNECTOR AND PIN MAP. This appendix lists the electrical connections on the

body-board.

 FILE SYSTEM. This appendix lists the key files that are baked into the system.

 BLUETOOTH LE SERVICES & CHARACTERISTICS. This appendix provides information on the

Bluetooth LE interface GUIDs to the companion Cube, and to Anki Vector.

 SERVERS. This appendix provides the servers that the Anki Vector and App contacts

 FEATURES. This appendix enumerates the Vector OS “features” that can be enabled and

disabled; and the AI behavior’s called “features.”

 PHRASES. This appendix reproduces the phrases that the Vector keys off of.

 EMOTION EVENTS. This appendix provides a list of the emotion events that Vector internally

responds to.

 DAS EVENTS. This appendix describes the identified DAS events

 PLEO. This appendix gives a brief overview of the Pleo animatronic dinosaur, an antecedent

with many similarities.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 470

[This page is intentionally left blank for purposes of double-sided printing]

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 471

APPENDIX A

Abbreviations,

Acronyms, Glossary

Abbreviation /
Acronym

Phrase

ADC analog to digital converter

AG animation group

ALSA advanced Linux sound architecture

APQ application processor Qualcomm (used when there is no modem

in the processor module)

ASR automatic speech recognition

AVS Alexa Voice Service

BIN binary file

BMS battery management system

BNK AudioKinetic sound bank file

CCIS customer care information screen

CLAD C-like abstract data structures

CLAHE contrast-limited adaptive histogram equalization

CNN convolution neural network

CRC cyclic redundancy check

CSI Camera serial interface

DAS unknown (diagnostic/data analytics service?)

DFU device firmware upgrade

DTTB Dance to the beat

DVT design validation test

EEPROM electrical-erasable programmable read-only memory

EMR electronic medical record

ESD electro-static discharge

ESN electronic serial number

EVT engineering validation test

FBS flat buffers

FDE full disc encryption

FFT fast Fourier transform

Table 599: Common

acronyms and

abbreviations

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 472

GPIO general purpose IO

gRPC Google remote procedure call

GUID globally unique identifier (effectively same as UUID)

HLAI high-level AI

I2C inter-IC communication

IMA ADPCM interactive multimedia association adaptive pulse-code

modulation

IMU inertial measurement unit

IR infrared

JDocs JSON Documents

JSON JavaScript Object Notation

JTAG Joint Test Action Group

JWT JSON web token

LCD liquid crystal display

LED light emitting diode

LUKS Linux unified key setup

MCU microcontroller

mDNS multicast domain name service (DNS)

MEMS micro-electromechanical systems

MIPI mobile industry processor interface

MISO master-in, slave-out

MOSI master-out, slave-in

MPM McLeod pitch detection method

MPU microprocessor

MSM mobile station modem, the APC processor and a modem.

MSRP manufacturer’s suggest retail price

OLED organic light-emitting diode display

OTA over the air updates

PCB printed circuit board

PCBA printed circuit board assembly (PCB with the components

attached)

PCM pulse-code modulation

PDM pulse-density modulation

PMIC power management IC

PNG portable network graphics; an image file format

PWM pulse width modulation

PVT production validation test

QSN Qualcomm serial number

ROI region of interest

RPM resource power management

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 473

RRT rapidly-expanding random tree

RSSI received signal strength indicator

SCLK (I2C) serial clock

SDA (I2C) serial data

SDK software development kit

SHK silicon-based hardware key

SLAM simultaneous localization and mapping

SOC system on a chip

SPAD single photon avalanche diode

SPI serial-peripheral interface

SSH secure shell

SSID service set identifier (the name of the Wifi network)

STM32 A microcontroller family from ST Microelectronics

SWD single wire debug

SYSCON system controller

TAR tape archive file

TTS text to speech

UART universal asynchronous receiver/transmitter

USB universal serial bus

UUID universally unique identifier (effectively same as GUID)

vic short for Victor (Vector’s working name)

WEM AudioKinetic Wwise Encoded Media. (a type of sound file)

Phrase Description

A* A path finding algorithm

aboot The Android boot-loader used to launch Vector’s linux system.

accelerometer A sensor used to measure the angle of Vector’s head, and acceleration (change in

velocity).

animation A scripted “sequence of highly coordinated movements, faces, lights, and sounds

… to demonstrate an emotion or reaction.”

animation trigger name An identifier of a group of related animations; Vector “pick[s] .. [an] actual

animations to play based on Vector’s mood or emotion, or with random

weighting. Thus playing the same trigger twice may not result in the exact same

underlying animation playing twice.”

attitude Vector’s orientation, esp relative to the direction of travel

autocorrelation A technique to find how repetitive a signal is; it works by finding how much one

has to shift version of the signal before it (mostly) matches the original signal

again.

backpack board The circuit board in Vectors head with lights, push button, microphones and

touch sensor

Table 600: Glossary

of common terms and

phrases

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 474

beam forming A technique using multiple microphones to listen to a single speaker by

selectively paying attention to sound only coming from that direction.

behavior Behaviors represent a complex task [that] may include combinations of

animation, path planning or other functionality. Examples include” driving to the

charger, set the lift height, etc.

behavior tree A decision tree that decides if a behavior can run or can no longer run, which

related behaviors to start, and the parameter settings to run the behavior with.

body board The circuit board in Vector’s belly that manages the battery and drives the motors

boot loader A piece of software used to load and launch the application software.

C-like abstract data
structure
(CLAD)

Anki’s phrase for how they pack information into fields and values with a defined

binary format. “Any data [passed] over the wire, [is] define[d with] enums,

structures and messages in “.clad” files.. [with a] syntax [that] looks a lot like C

structs. [A tool] auto-generate[s] Python, C++ and C# code for each of these

structures, along with code to serialize and deserialize to efficiently packed byte

streams of data.” 70 (FlatBuffers are used for the same purpose, but were not

available when CLAD was developed.)

capacitive touch A type of sensing where light contact, such as touch, is detected without requiring

pressing a mechanism.

cascade Applies a series of fast to compute filters and classifiers to detect low-level

features and identify things like faces.

cepstrum A way of using the frequency spectrum to analyze a voice.

certificate Vector generates an SSL certificate that can be used for the secure

communications.

characteristic (Bluetooth
LE)

A key (or slot) that holds a value in the services key-value table. A characteristic

is uniquely identified by its UUID.

client token A string token provided by Vector that is passed with each SDK command.

control Responsible for motors and forces to move where and how it is told to. (smooth

arcs)

cooldown A period of time after an action, animation, or behavior has run before it can be

run again. see also hold-off timer

D*-lite A path-finding algorithm

decimation The amount (or ratio) that something is down sampled by.

delocalization “Whenever Vector no longer knows where he is – e.g. when he's picked up,” or

falls.

device mapper verity
(dm-verity)

A feature of the Linux kernel that checks the boot and RAM file systems for

alteration, using signed keys

electronic medical record A software record of Vector’s serial number, model, lot code, manufacturing &

test dates, and other information. This is stored in flash.

electronic serial number Vector’s serial number, but the copy that is in his electronic medical record.

entitlement An entitlement is a family of features or resources that the program or owner is

allowed to use.

face detection The ability to realize that there is a face in the image, and where it is

face recognition The ability to know the identity of a face seen.

feature flags
aka feature toggle

A setting that enables and disables features, especially those still in development.

This allows developing the code and integrating its structure before the module or

function is completely ready. Otherwise it is very difficult to keep the different

70 https://forums.anki.com/t/what-is-the-clad-tool/102/3

https://forums.anki.com/t/what-is-the-clad-tool/102/3

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 475

branches of development in sync and merge them when the feature is ready.

field of view How wide of an area in the world that the camera can see

firmware A type of software held (and usually executed from) in ROM or flash. It may

have a (minimal) operating system, but often does not.

flash A type of persistent (non-volatile) storage media.

guidance Builds the desired path

gyroscope A sensor that is used to measure how fast Vector is turning (the angular velocity)

along its x, y, and z axes.

Haar feature Facial features picked out using Haar wavelets

Haar wavelet A fast, low-cost that can used to pick out (or recognize) simple features in an

image.

habitat A small area for Vector to drive around in while alone, without accidentally

driving off the edge or getting lost. Sold as “Vector Space”

head board The circuit board in Vector’s head with the main processor, WiFi (and Bluetooth

LE), camera, speaker, etc.

hold-off timer a timer that prevents another trigger or event for a period of time (after the

previous one). see also cool down.

hotword aka wake word

inertial measurement
unit

The combination of an accelerometer and gyroscope to measure linear

acceleration and rotational velocity.

inner node A node in a tree data structure that does links to other nodes below it. Often it

does not hold any other information.

intent An intent is an internal code (and accompanying structure) that is used to

represent the how to respond to the question or other phrases spoken by a person.

It may represent the action requested, an answer to a query, or an action that

emotionally responds to what was said.

JSON web token71 A compressed, encoded JSON structure that hold a small amount of data (like a

cookie), and some meta-information about how long the token is valid for.

Kalman filter Used to merge two or more noisy signals together to estimate a proper signal.

leaf node A node in a tree data structure that does not link to any other nodes below it. It

holds the information that was being looked up.

navigation Knowing where it is in the map

nonce An initially random number, incremented after each use.

odometry Estimate motion – displacement and rotation – from inertial measurement units

and wheel & track rotation.

path planning Forms smooth arcs and line segments to move in around an environment to avoid

collisions, blocked paths, and cliffs. This is often used to navigate from point A

to point B.

playpen The playpen is a testing area with ramps, barriers, camera targets at a variety of

angles, cube and a charging station.

playpen test The playpen test is a check of the robots sensors, camera calibration, motor

function, microphone and a check over his overall functions. During testing,

Vector’s is checked for correct function: that he can correctly navigate, detect

cliffs, see markers (getting their type and size correct), dock, and charge.

pose The position and orientation of an object relative to a coordinate system

71 https://en.wikipedia.org/wiki/JSON_Web_Token

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 476

power source Where the electric energy used to power Vector comes from.

quad-tree A way of compressing a 2D map down into regions.

rapidly-expanding
random tree

A path-finding algorithm

recovery mode A separate, independent operating system that Vector can boot into for purposes

of downloading software to replace a damaged partition.

robot name Vector’s robot name looks like “Vector-E5S6”. It is “Vector-” followed by a 4

letters and numbers.

serial number A unique number that is stamped on Vector’s hardware (on the bottom) and in his

electronic medical record.

service (Bluetooth LE) A key-value table grouped together for a common purpose. A service is uniquely

identified by its UUID.

session token A string token provided by the Anki servers that is passed to Vector to

authenticate with him and create a client token.

silicon-based hardware
key

This is a key that is unique to each processor – it is programmed by blowing

fuses during manufacture – and is used to check the signing by secure boot and

TrustZone functions.

simultaneous localization
and mapping

A vision-based technique for building a map of the immediate world for purposes

of positioning oneself within it and detecting relative movements.

software Software is distinct from firmware in that is often loaded from external storage to

be run in RAM, and is based on dynamic linking, allowing the use of other

(replaceable) software elements. It does not access hardware directly; instead it

employs sophisticated features of the operating system.

system controller
(syscon)

The name of the body-board microcontroller, and the firmware program running

on it.

tempo The pace of music, in beast per second

text to speech A process of reading aloud a word, phrase, sentence, etc.

trigger word aka wake word

Trust Zone A security mode on ARM processor where privileged/special code is run. This

includes access to encryption/decryption keys.

universally unique
identifier (UUID)

A 128bit number that is unique. (effectively same as GUID)

vocoder A sound effect that analyzes and transforms a voice; in this case to give Vector

his unique vocal sound.

wake word The phrase (“Hey, Vector”) used to activate Vector so that he will respond to

spoken interaction.

Quotes are from Anki SDK.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 477

APPENDIX B

Tool chain

This appendix tries to capture the tools that Anki is known or suspected to have used for the Anki

Vector and its cloud server.

Tool Description

Acapela Vector uses Acapela’s text to speech synthesizer, and the Ben voice.
https://www.acapela-group.com/

Advanced
Linux Sound
Architecture
(alsa)

The audio system
https://www.alsa-project.org

Amazon Alexa A set of software tools that allows Vector to integrate Alexa voice commands, probably in

the AMAZONLITE distribution

https://github.com/anki/avs-device-sdk
https://developer.amazon.com/alexa-voice-service/sdk

Amazon Simple
Queue Service
(SQS)

Vector employs Amazon’s SQS for its DAS functions.

Amazon Simple
Storage
Service (S3)

Vector’s cloud interface uses Amazon’s AWS go module to interact with Amazon’s service:

https://docs.aws.amazon.com/sdk-for-go/api/service/s3/
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Stora
ge_Service.html

Amazon Web
services

used on the server
https://aws.amazon.com/

android boot-
loader

Vector uses the Android Boot-loader; the code can be found in the earlier archive.

ARM NN ARM’s neural network support
https://github.com/ARM-software/armnn

AudioKinetic
Wwise72

Used to craft the parametric sound effects, and play pre-recorded effects.
https://www.audiokinetic.com/products/wwise/

Backtrace.io A service that receives uploaded minidumps from applications in the field and provides

tools to analyze them.
https://backtrace.io

clang A C/C++ compiler, part of the LLVM family
https://clang.llvm.org

bluez v5 Bluetooth LE support
http://www.bluez.org/

busybox The shell on the Anki Vector linux
https://busybox.net

chromium
update

?

civetweb The embedded webserver that allows Mobile apps and the python SDK to communicate

72 https://blog.audiokinetic.com/interactive-audio-brings-cozmo-to-life/

Table 601: Tools used

by Anki

https://www.acapela-group.com/
https://www.alsa-project.org/
https://github.com/anki/avs-device-sdk
https://developer.amazon.com/alexa-voice-service/sdk
https://docs.aws.amazon.com/sdk-for-go/api/service/s3/
https://docs.aws.amazon.com/AmazonS3/latest/API/%20API_Operations_Amazon_Simple_Storage_Service.html
https://docs.aws.amazon.com/AmazonS3/latest/API/%20API_Operations_Amazon_Simple_Storage_Service.html
https://aws.amazon.com/
https://github.com/ARM-software/armnn
https://www.audiokinetic.com/products/wwise/
https://backtrace.io/
https://clang.llvm.org/
http://www.bluez.org/
https://busybox.net/
https://blog.audiokinetic.com/interactive-audio-brings-cozmo-to-life/

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 478

with Vector.
https://github.com/civetweb/civetweb

connman Connection manager for WiFi
https://01.org/connman

Eigen A linear algebra library

http://eigen.tuxfamily.org/

gemmlowp A low-precision general matrix multiplication library

https://github.com/google/gemmlowp

GNU C
Compiler (gcc)

GCC version 4.9.3 was used to compile the kernel

golang Go is used on the server applications, and (reported) some of Vector’s internal software.

Google
Breakpad

Google Breakpad is used to generate tracebacks and mini-dump files of programs that crash.

Results are sent to htttp://backtrace.io
https://chromium.googlesource.com/breakpad/breakpad

Google
FlatBuffers

Google FlatBuffers is used to encode the animation data structures. “It is similar to protocol

buffers, but the primary difference is that FlatBuffers does not need a parsing/unpacking

step to a secondary representation before you can access data, often coupled with per-object

memory allocation. Also, the code footprint of FlatBuffers is an order of magnitude smaller

than protocol buffers”73 https://github.com/google/flatbuffers

Google
Protobuf

Google’s Protobuf interface-description language is used to describe the format/encoding of

data sent over gRPC to and from Vector. This is used by mobile and python SDK, as well

as on the server.
https://developers.google.com/protocol-buffers

Google RPC
(gRPC)

A “remote procedure call” standard, that allows mobile apps and the python SDK to

communicate with Vector.
https://grpc.io/docs/quickstart/cpp/

hdr-histogram This is a library used to support gathering histograms over a potentially wide range. It is

most likely used when gathering stats about internet access speeds, and equalizing images
from the camera.
https://github.com/HdrHistogram/HdrHistogram

libsodium Cryptography library suitable for the small packet size in Bluetooth LE connections. Used

to encrypt the mobile applications Bluetooth LE connection with Vector.
https://github.com/jedisct1/libsodium

linux, yocto74 The family of linux distribution used for the Anki Vector

(v3.18.66)

linux unified
key storage
(LUKS)

This is used to protect the private keys and user data.

Maya A character animation tool set, used to design the look and movements of Cozmo and

Vector. The tool emitted the animation scripts.

mpg123 A MPEG audio decoder and player. This is needed by Alexa; other uses are unknown.
https://www.mpg123.de/index.shtml

ogg vorbis Audio codec
https://xiph.org/vorbis

Omron OKAO
Vision

Vector uses the Omron Okao Vision library for face recognition and tracking.
https://plus-sensing.omron.com/technology/position/index.html

open CV Used for the first-level image processing – to locate faces, hands, and possibly accessory

symbols.
https://opencv.org/

73 https://nlp.gitbook.io/book/tensorflow/tensorflow-lite
74 https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822

https://github.com/civetweb/civetweb
https://01.org/connman
http://eigen.tuxfamily.org/
https://github.com/google/gemmlowp
https://chromium.googlesource.com/breakpad/breakpad
https://github.com/google/flatbuffers
https://developers.google.com/protocol-buffers
https://grpc.io/docs/quickstart/cpp/
https://github.com/HdrHistogram/HdrHistogram
https://github.com/jedisct1/libsodium
https://www.mpg123.de/index.shtml
https://xiph.org/vorbis
https://plus-sensing.omron.com/technology/position/index.html
https://opencv.org/
https://nlp.gitbook.io/book/tensorflow/tensorflow-lite
https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 479

openssl used to validate the software update signature
https://www.openssl.org

opkg Package manager, from yocto
https://git.yoctoproject.org/cgit/cgit.cgi/opkg/

Opus codec Audio codec; to encode speech sent to servers
http://opus-codec.org/

perl A programming language, on Victor
https://www.perl.org

Pretty Fast FFT
pffft

Julien Pommier’s FFT implementation for single precision, 1D signals
https://bitbucket.org/jpommier/pffft

Pryon, Inc The recognition for the Alexa keyword at least the file system includes the same model as

distributed in AMAZONLITE
https://www.pryon.com/company/

python A programming language and framework used with desktop tools to communicate with

Vector. Vector has python installed. Probably used on the server as well.
https://www.python.org

Qualcomm Qualcomm’s device drivers, camera support and other kit are used.

Segger ICD A high-end ARM compatible in-circuit debugging probe. Rumoured to have been used by

Anki engineers, probably with the STM32F030
https://www.segger.com/products/debug-probes/j-link/

Sensory
TrulyHandsFree

Vectors recognition for “Hey Vector” and Alexa wake word is done by Sensory, Inc’s

TrulyHandsfree SDK 4.4.23 (c 2008)
https://www.sensory.com/products/technologies/trulyhandsfree/
https://en.wikipedia.org/wiki/Sensory,_Inc.

Signal Essence Designed the microphone array, and the low-level signal processing of audio input.

https://signalessence.com/

Sound Hound,
inc
Houndify

Vector’s Q&A “knowledge graph” is done by Sound Hound, using their Houndify product
https://blog.soundhound.com/hey-vector-i-have-a-question-3c174ef226fb
https://www.houndify.com/

SQLite This is needed by Alexa; other uses are unknown
https://www.sqlite.org/index.html

systemd Used by Vector to launch the internal services
https://www.freedesktop.org/software/systemd/

tensor flow lite
(TFLite)

TensorFlow lite is used to recognize hands, the desk surface, and was intended to support

recognizing pets and common objects.
https://www.tensorflow.org/lite/microcontrollers/get_started

151. REFERENCES & RESOURCES

Several of the tools have licenses requiring Anki to post that the tools was listed and/or to post

their versions of the tools, and their modification. The following archives of the open source tools

are listed in the “acknowledgements” section of the mobile application:75

https://anki-vic-pubfiles.anki.com/license/prod/1.0.0/licences/OStarball.v160.tgz
https://anki-vic-pubfiles.anki.com/license/prod/1.0.0/licences/engineTarball.v160.tgz

75 You can only read the acknowledgements in the mobile application if you are connected to a robot.

https://www.openssl.org/
https://git.yoctoproject.org/cgit/cgit.cgi/opkg/
http://opus-codec.org/
https://www.perl.org/
https://bitbucket.org/jpommier/pffft
https://www.pryon.com/company/
https://www.python.org/
https://www.segger.com/products/debug-probes/j-link/
https://www.sensory.com/products/technologies/trulyhandsfree/
https://en.wikipedia.org/wiki/Sensory,_Inc.
https://signalessence.com/
https://blog.soundhound.com/hey-vector-i-have-a-question-3c174ef226fb
https://www.houndify.com/
https://www.sqlite.org/index.html
https://www.freedesktop.org/software/systemd/
https://www.tensorflow.org/lite/microcontrollers/get_started
https://anki-vic-pubfiles.anki.com/license/prod/1.0.0/licences/OStarball.v160.tgz
https://anki-vic-pubfiles.anki.com/license/prod/1.0.0/licences/engineTarball.v160.tgz

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 480

APPENDIX C

Alexa modules

This Appendix outlines the modules used by the Alexa client built into Vector (using the Alexa

Client SDK). Alexa’s modules connect together like so:

Alexa’s modules include:

Library Description & Notes

libACL.so Alexa Communication Library. “Serves as the

main communications channel between the device

and the Alexa Voice Service.”

libAIP.so Audio Input Processor. “Handles the audio input to

Alexa Voice Service from on-device microphones,

remote microphones and other audio input

sources.”

libADSL.so Alexa Directive Sequencer Library (Directive

Router, Processor, Sequencer; Message

Interpreter).

libAFML.so Activity Focus Manager Library, including Audio

Activity Tracker, Visual Activity tracker.

“Prioritizes the channel inputs and outputs as

specified by the AVS Interaction Model”

libAlerts.so Alexa alert scheduler; “The interface for setting,

stopping, and deleting timers and alarms.”

libAudioPlayer.so Alexa’s audio player. “The interface for managing

and controlling audio playback.”

Figure 138: Alexa’s

function blocks

(image courtesy

Amazon)

Table 602: Alexa files

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 481

libAudioResources.so Alexa’s audio resources, including calls

libAVSCommon.so Alexa’s voice service support

libAVSSystem.so Alexa’s voice service support

libCapabilitiesDelegate.so Alexa capabilities. “Handles Alexa-driven

interactions; specifically, directives and events.

Each capability agent corresponds to a specific

interface exposed by the AVS API.”

libCBLAuthDelegate.so Alexa Authorization

libCertifiedSender.so Alexa certified sender

libContextManager.so Alexa’s context manager

libESP.so Alexa ESP, Dummy ESP

libInteractionModel.so “This interface allows a client to support complex

interactions initiated by Alexa, such as Alexa

Routines.”

libNotifications.so Alexa Notifications. “The interface for displaying

notifications indicators.” Uses SQLite

libPlaybackController.so “The interface for navigating a playback queue via

GUI or buttons.”

libPlaylistParser.so Alexa playlist

libRegistrationManager.so Alexa’s registration manager

libSettings.so Alexa’s settings & preferences module

libSpeakerManager.so

libSpeechSynthesizer.so “The interface for Alexa speech output.”

Note: quotes from Amazon Alexa Voice Services SDK documentation

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 482

APPENDIX D

Fault and status codes

The following are system status codes that may be produced during startup (Quotes from “Anki

Vector Error Codes”):

Code Meaning

1..10 Systemd failed…?

1 “Switchboard: unknown status”

2 “Switchboard: [Over the Air Update is] in progress ”

3 “Switchboard: [Over the Air Update has] completed”

4 “Switchboard: rebooting”

5 “Switchboard: other [Over the Air Update] error”

10 “OS: Unknown system error”

001-099 Playpen

100-199 Error related to the body-board (syscon)

200-219 Software update status codes, see table below

220-299 Error codes in the range of 220-299 refer to problems from the software

processes within Vector’s OS

300-799 Error codes in the range of 300-799 refer to problems expected during factory

tests.

700 The robot was shutdown because the button was pressed.

701 The gyroscope sensor is out of range or failed (it wasn’t able to calibrate), so

the robot shutdown.

702 The robot was shutdown because the battery voltage was too low.

703-704 Internal sensor out of range or failed.

705 The robot was shutdown because the battery was too hot to safely operate.

800-999 Error codes in the range of 800-999 refer to “power on self check” failures.

800 Vic-anim was unable to start or crashed.

801 The process to update the cube firmware failed.

840 The camera calibration is missing.

850 There is a problem with the cloud certificate

851 There is a problem with the cloud token store

852 There is a problem reading the cloud electronic serial number (ESN).

870 The front right MEMS microphone failed during power-on self test.

871 The front left MEMS microphone failed during power-on self test.

872 The back right MEMS microphone failed during power-on self test.

873 The back left MEMS microphone failed during power-on self test.

890 The front right cliff sensor failed during power-on self test.

891 The front left cliff sensor failed during power-on self test.

892 The back right cliff sensor failed during power-on self test.

Table 603: The

system fault codes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 483

893 The back left cliff sensor failed during power-on self test.

894 The time-of-flight distance sensor failed during power-on self test.

895 The touch sensor failed (during power-on self test?)

898 The main board is unable to communicate with the body-board. The cable

between boards may be disconnected. This also appears as a software bug in
version 1.6.

899 “No Body” This may mean that the main board is unable to communicate with

the body-board. The cable between boards may be disconnected. This also
appears as a software bug in version 1.6.

911 The audio system (hardware or software?) is not working properly.

913 Vic-switchboard was unable to start or crashed

914 Vic-engine was unable to start or crashed. “This was what zombie 915 was

(915 on the screen, robot still drove around)”
If vic-engine can’t read some part of the behavior tree, this will appear.

915 Vic-engine stopped responding.

916 Vic-robot was unable to start or crashed

917 Vic-anim stopped responding (Or Vic-robot stopped responding.)

919 systemd is not working properly

920 Vic-gateway-cert was unable to generate a x509 certificate for vic-gateway

921 Vic-gateway was unable to start or crashed

923 Vic-cloud was unable to start or crashed

960 The IMU (accelerometer and gyroscope) has failed, or is not communicating

properly.

919

970 The WiFI hardware has failed.

980 “These codes indicate issues with the camera. These issues are typically

caused by mm-anki-camera hanging when we try to stop the camera stream on
vic-engine stop. We have to manually kill it and start it again.”

981 The camera stopped responding. “These codes indicate issues with the camera.

These issues are typically caused by mm-anki-camera hanging when we try to

stop the camera stream on vic-engine stop. We have to manually kill it and start

it again.”

990 The LCD display is not communicating properly with the processor.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 484

The following are the Playpen Failure codes. These overlap some of the error number ranges for

other status codes:

Status Meaning

0 Unknown: “Not possible”

1 Success: “Passed playpen”

2 There was a problem with one of the CLAD data structures. This error should

not happen.

3 The lift or head failed. This error should not happen.

4 The “robot not detecting charger/ not charging. Make sure charger is plugged

in; Check charge, contacts/charge circuit”

5 The charger is unavailable. This error should not happen.

6 The charger is not connected. This error should not happen.

7 The IMU is faulty or not communicating. The IMU is faulty. “Check/replace

IMU. Maybe robot is shaking/moved while on charger.”

8 Still on charger. This error should not happen.

9 Failed to go to the calibration pose. This error should not happen.

10 The “robot saw a cliff and then stopped seeing it. Check cliff sensors;

Check cliff slot in playpen; Check playpen surface for dirt”

11 The “robot detected a cliff” where there is none. “Check cliff sensors;

Check playpen surface for dirt.”

12 The robot is not in the calibration pose. This error should not happen.

13 The calibration has failed. The “robot is seeing the calibration target but

calibration [is] taking too long.” “Check calibration target; Check camera

position and lens”

14 The “camera calibrated but the calibration is outside normal range. Check
camera position and lens”

15 “Failed to write [camera calibration] data to [the] robot [non-volatile storage].

Should never happen”

16 “Failed to write [camera calibration image] data to [the] robot [non-volatile

storage]. Should never happen”

17 “Failed to write [calibration pose] data to [the] robot [non-volatile storage].

Should never happen”

18 “Too many calibration images. Not possible.”

19 “Calibration pose failed. Not possible.”

20 “Read tool code failed. Not possible.”

21 “Tool code positions [out of range]. Not possible”

22 “Tool code write failed. Not possible.”

23 “Goto pre pickup pose action failed. Not possible.”

24 “Not in pre pickup pose. Not possible.”

25 “Not seeing cube to pickup. Check [that the] cube is in correct spot;

Check [the] camera; Check [the] wheels if robot is not facing the cube”

26 “Seeing cube to pickup but robot thinks the cube is somewhere else. Check

[that the] cube is in correct spot; Check [the] camera position.”

27 “Failed to pickup cube. Check [the] cube position; check [the] lift

motor/gearbox.”

28 “Failed to place cube. Check [the] lift motor/gearbox.”

Table 604: Playpen

Failure codes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 485

29 “Unexpected observed object. Not possible.”

30 “Goto pre mount charger pose action failed. Not possible”

31 The charger was not found. “Not possible”

32 The charger dock failed. “Not possible”

33 Queue action failed. “Not possible.”

34 “A motor randomly calibrated. Check for issue with all motors: Sticky

gearbox? Encoder problem?”

35 “Failed to write [test result] data to [the] robot [non-volatile storage]. Should

never happen”

36 A test timed out. “Some step of playpen took too long and never completed.

Try rerunning”

37 The test was cancelled. “Not possible”

38 The “robot detected being picked up. Was the robot picked up during the test

or lifted off the ground in some way? Check cliff sensors; Check IMU”

39 “Tool code images write failed. Not possible.”

40 The “touch sensor readings [are] not stable, [too noisy]. Check touch sensor”

41 “Failed to write [cube pose] data to [the] robot [non-volatile storage]. Should

never happen”

42 The “lift motor randomly calibrated. Check lift motor/gearbox”

43 The “head motor randomly calibrated. Check head motor/gearbox”

44 “Touch sensor readings [are] too small or [too] large. Check touch sensor”

45 The robot “rid not pass all previous fixtures. Run robot through previous

fixtures”

46 The robot has not been tested. “Not possible.”

47 The “head/lift motor failed to calibrate. Check head/lift motor/gearbox”

48 “Failed to write [birth certificate] data to [the] robot [non-volatile storage].

Should never happen”

49 “Failed to write data to [the] robot [non-volatile storage]. Should never

happen”

50 “Failed to write data to [the] robot [non-volatile storage]. Should never

happen”

51 There are “too many tool code images. Not possible.”

52 “Failed to write [calibration meta information] data to robot. [This] should

never happen.”

53 “Failed to write [IMU] data to robot. [This] should never happen.”

54 “No [Bluetooth LE] advertising packet [was received] from a cube. Check
battery of cube; Check [Bluetooth LE] radio on robot.”

55 “Touch sensor readings [standard deviation is] too large. Check [the] touch

sensor.”

56 Failed to computer the camera pose. “Not possible.”

57 The camera pose is out of range. “Not possible.”

58 Failed to play sound. “Not possible.”

59 Was unable to read the results of the previous test. “Not possible.”

60 The wrong firmware version. “Not possible.”

61 A cliff sensor value is too high. “Not possible.”

62 A cliff sensor value is too low. “Not possible.”

63 The “robot did not backup straight while picking up the cube. Check wheel

treads/motors/gearboxes”

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 486

64 The “battery is too low. Check battery; Leave robot on a charger for a couple

of minutes to charge”

65 No IMU data. “Not possible.”

66 The “robot did not backup straight after picking up the cube. Check [the]

wheel treads/motors/gearboxes”

67 The wrong body hardware version. This error should not happen.

68 There is no body hardware version information. This error should not happen.

69 The non-volatile storage erase operation failed. “Not possible.”

70 Was unable to parse the header of [??]. “Not possible.”

71 “No WiFi [access points were] found. Check [the] radio on [the] robot”

72 “Unknown body color. Not possible.”

73 “Failed to write data to robot. [This] should never happen”

74 The behavior is not runnable. “Software bug. Try rerunning.”

75 The “robot [is] not seeing [the] camera calibration target. Check camera

position and lens”

76 The “robot detected being on a charger randomly. Check charge

contacts/circuit”

77 “Head motor randomly disabled. Check head motor/gearbox”

78 “Lift motor randomly disabled. Check lift motor/gearbox”

79 “Some motor randomly disabled. Check all motors/gearboxes”

80 The “robot detected unexpected movement. [It] probably ran into something

in playpen. Check wheels; Check IMU”

81 “Some action [that] the robot was trying to do failed.

82 The “robot failed to detect front cliffs. Check [the] front two cliff sensors.”

83 The “robot failed to detect back cliffs. Check [the] back two cliff sensors.”

84 The “robot failed to undetect front cliffs after detecting them. Check [the] front

two cliff sensors.”

85 The “robot failed to undetect back cliffs after detecting them. Check [the] back

two cliff sensors.”

86 The “robot thinks [that the] cube [is too] low in the ground. Check [the] cube

position; Check camera position/rotation”

87 The “robot thinks [that the] cube [is too] high above the ground. Check [the]

cube position; Check camera position/rotation”

88 The “camera calibrated but the calibration is outside normal range. Check

camera position and lens.”

89 The “robot [is] not seeing [the] distance sensor marker. Check [the] robot[s]

position at [the] time of failure, why wasn't it seeing the marker. Check [the]
distance sensor marker.”

90 The “robot [is] seeing [the] distance sensor marker [too] close or far away.

[The] robot is too far or close to [the] distance sensor marker; check [the]
wheels.”

91 The “front right [microphone is] not working. Check [the] front right

[microphone].”

92 The “front left [microphone is] not working. Check [the] front left

[microphone].”

93 The “back right [microphone is] not working. Check [the] back right

[microphone].”

94 The “back left [microphone is] not working. Check [the] back left

[microphone].”

95 “Either [the] speaker [is] not working or all [of the microphones are] not

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 487

working. If [the] robot played [a] sound, check all [of the microphones,
otherwise] check [the] speaker.”

96 “Never received FFT result from [the microphone] check.”

97 The “touch sensor reporting unexpected [out of range] values. Check [the]

touch sensor.”

98 The time-of-flight “distance sensor reporting incorrect values. Check [the]

distance sensor.”

99 The certificates were checked but have been found to be invalid. “Invalid

[certificates] written by previous fixture. Run robot through previous fixtures”

The following are the RAMPOST DFU error codes. (These are not the fault status code):

Status Meaning

16 Couldn’t get version from syscon

17 Failed to erase

18 couldn't send data to download

19 App failed verification check or could not be verified

Table 605: RAMPOST

DFU status codes

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 488

The following are the update-engine status codes that may be produced during the update process:

Status Meaning

200 The TAR contents did not follow the expected order.

201 Unhandled section format for expansion, or

The manifest version is not supported, or

The OTA has the wrong number of images for the type, or

The OTA is missing a BOOT or SYSTEM image, or
The manifest configuration is not understood

202 Could not mark target, a, or b slot unbootable, or

Could not set target slot as active

203 Unable to construct automatic update URL, or

The URL for the update could not be opened

204 The file (from the update URL) wasn’t a valid TAR file, or is corrupt

205 The compression scheme is not supported, or

Decompression failed, the file may be corrupt

206 “Block error” (Note: this error code is not present in Vector’s update software,

and may be reserved.)

207 Delta payload error

208 Couldn't sync OS images to disk, or
Disk error while transferring OTA file.

209 The manifest failed signature validation; or the aboot, boot image, system

image, or delta.bin hash doesn't match signed manifest

210 The encryption scheme is not supported.

211 Vector’s current version doesn’t match the baseline for a delta update.

212 The decompression engine had an unexpected, undefined error.

213 The processor serial number (QSN) doesn't match the one in the manifest

214 There is a mismatch: development Vectors can’t install release OTA software,

and release Vectors can’t install development OTA software.

215 OTA transfer failed, due to timeout. (There may be poor network

connectivity)

216 OS version name in the update file doesn’t follow an acceptable pattern (the

version suffixes – for production, release candidate, userdev, and development

– must match the already installed software), or it is not allowed to upgrade or

downgrade from the current version to the new version.

219 Other unexpected, undefined error while transferring OTA file.

152. REFERENCES AND RESOURCES

Anki Vector Error Codes, 2020-2-26

https://documents.project-victor.org/Release-Anki-Vector-error-codes-20200226.pdf

https://github.com/GooeyChickenman/victor/blob/master/documentation/Anki-Vector-

error-codes%20-%2020200226.pdf

Table 606: OTA

update-engine status

codes

https://documents.project-victor.org/Release-Anki-Vector-error-codes-20200226.pdf
https://github.com/GooeyChickenman/victor/blob/master/documentation/Anki-Vector-error-codes%20-%2020200226.pdf
https://github.com/GooeyChickenman/victor/blob/master/documentation/Anki-Vector-error-codes%20-%2020200226.pdf

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 489

 APPENDIX E

Body Board

Connectors, Pin Map

This appendix covers:

 The body-board connectors

 The microcontroller peripheral allocation

 The microcontroller pin maps

153. BODY-BOARD CONNECTORS

The body-board has the following connectors:

 Connector to the head-board

 Connector to the head motor & encoder

 Connector to the lift motor & encoder

 Connector to the time of flight sensor

 Connector to the backpack board

153.1.1 The head-motor connector

The P1 Head motor connector (P1) has the following functions for its pins:

Pin# Label Test point Cable Color Description

1 CAI HENCK Brown Head encoder emitter on/off (low is on)

2 E2 HENCB Yellow Head encoder output B

3 E1 HENCA Green Head encoder output A

4 VDD White Head encoder voltage source

5 Motor - Black Motor connection

6 Motor + Red Motor connection

Alexander Entinger

Table 607: Head

Motor Connector (P1)

pin map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 490

153.1.2 The lift-motor connector

The lift motor connector (P2) has the following functions for its pins:

Pin# Label Test point Cable Color Description

1 CAI LENCK Brown Lift encoder emitter on/off (low is on)

2 E2 B Yellow Lift encoder output B

3 E1 A Green Lift encoder output A

4 VDD White Lift encoder voltage source

5 Motor - Black Motor connection

6 Motor + Red Motor connection

153.1.3 The time of flight connector

The front (Time of Flight) sensor connector has the following functions for its pins:

Pin# Label Test point Cable Color Description

1 VDD VDD (TP) Red Sensor voltage source

2 SCL1 Yellow I2C serial clock

3 SDA1 Green I2C serial data in/out

4 GND GND (DC) Black Sensor ground reference

153.1.4 Backpack connector

The flat-pack connector (P4) to the back-pack has the following functions for its pins:

Pin# Label Description

1 goes to Q17

2 has a 24M to head board power supply

3 MOSI has

4 MISO1

5 MISO2

6 VMAIN

7 PWR_B Power to the button

8 BAT_B Batter to the button

10 VDD Power for the microphones, LEDs, and logic

11

12

13 Touch

Table 608: Lift Motor

Connector (P2) pin

map

Table 609: Front

Sensor (time of flight)

Connector pin map

Table 610: Backpack

Connector pin map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 491

153.1.5 The debug connector

The PCBA debug pads, connector employs the following pins and functions:

Pin# Label Description

1 VX External power supply (connected with charger connector positive.)

2 BAI Internal power supply for head

3 TX UART transmit; connects to STM32F030C8T6 Pin #12 (PA2 = USART2_TX)

4 SWCLK Single wire debug clock signal

5 SWDIO Single wire debug bi-directional data signal

6 NRST Processor reset (reset is transition from low to high).

7 GND Ground

153.1.6 Other body-board test points

The remaining PCBA test points, connector employs the following pins and functions:

Test Point Layer Description

Vdd Bottom Body board MCU power supply

BODY_TX Bottom RS232 sent from the body board’s MCU

SCL2 Top I2C serial clock

SDA2 Top I2C serial data in/out

154. MICROCONTROLLER PIN MAPS AND RESOURCES

This section outlines the microcontroller pin maps and internal peripherals that are used.

 The allocation of DMA channels

 The allocation of timer channels

 The allocation of ADC channels

 Power control signals

 UART-related communication pins

 Microphone related pin allocation

 Cliff sensor and time of flight pin and function allocation

 LED driver pin allocation

 Motor driver pin and function allocation

Table 611: Debug

Connector pin map

Table 612: PCBA test

points

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 492

The DMA channels are allocated for the following functions:

DMA Channel Function

1 Used to regularly sample all of the ADC channels

2 Used to received the data from the microphones on SPI1

3 Used by USART TX to send data, the microcontroller lists this as

USART1 RX, but it uses the receive signal to drive sending the data.

4 Used to received the data from the microphones on SPI2

5 Used to receive USART1 data from the head board

The internal hardware timers are allocated for the following functions:

Timer Function

1 Used to PWM the motors

3 Used to PWM the motors

6

14 used to drive internal events processing

15 The input (SPI clock) to divide the clock down for the microphones

16 The divided the SPI clock for the microphones

17 Probably used to clock out the stuff to the LCD

154.1.1 ADC inputs

The ADC module employs the following pins and functions:

Pin Function Test point Description

PA2 ADC Charger input. Note: this pin is shared with the charger USART

communication.

PA4 ADC VBat Battery measurement.

PA3 ADC Unknown.

PA6 ADC Touch sense.

154.1.2 Power control, management

The power control employs the following pins and functions:

Pin Function Test point Description

PA3 digital out Power to head board?

PA12 digital out Power enable to back pack? To R34 (100K) the to Q14, gate

PB9 digital out Power enable to the body board from the MP charger.

Note: see also the encoders section for their power control.

Table 613: DMA

channel usage

Table 614: Timer

usage

Table 615: UART

communication pin

map

Table 616: Power

control pin map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 493

154.1.3 External Communication

The UART communication employs the following pins and functions:

Pin Function Test point Description

PA2 USART2 TX,
RX

TX in/out USART to charger port 1-wire communication. The USART is put

into half-duplex operation, so it employs the same pin for RX and

RX. Note: this pin is shared with the charger ADC measurement.

PB6 USART1 TX BODY_TX out USART to the head board.

PB7 USART1 RX in USART from the head board

154.1.4 Microphone related pin map

The microphone interface employs the following pins and functions:

Pin Function Test point Description

PA5 SPI1 Clock out Clock from SPI1. May be fed into TIM15 CH2

PB4 SPI1 MISO in Data in from the microphones for SPI1

PB8 TIM16_CH1 The clock used to drive all of the microphones; derived from

scaling down an SPI clock.

PB13 SPI2 Clock out Clock from SPI2. May be fed into TIM15 CH2

PB14 SP12 MISO in Data in from the microphones for SPI2

PB15 TIM15 CH2 out The SPI clock probably goes into here for division

154.1.5 Proximity sensors: Cliff, and Time of flight

The cliff and time of flight proximity sensors employ the following pins and functions:

Pin Function Test point Description

PB10 I2C2 Clock out I2C clock to the peripherals. This is alternated with PF6 to access

different peripherals.

PB11 I2C2 Data in/out I2C data to/from the peripherals. This is alternated with PF7 to

access different peripherals.

PF6 I2C2 Clock SCL2 out I2C clock to the peripherals. This is alternated with PB10 to access

different peripherals.

PF7 I2C2 Data SDA2 in/out I2C data to/from the peripherals. This is alternated with PB11 to

access different peripherals.

Table 617: UART

communication pin

map

Table 618:

Microphone related

pin map

Table 619: Proximity

sensor pin map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 494

154.1.6 LEDs

The LED controller employs the following pins:

Pin Function Test point Description

PA13 digital out The bits to be sent to the 74HC164. Note this pin also serves as

SWDIO.

PA14 digital out The clock for the bits sent to 74HC164. Note this pin also serves as

SWCLK.

154.1.7 Motor driver and encoders

The motor drivers use the following pins and functions:

Pin Function Test point Description

PA7 TIM1_CH1N out Motor 3 (Head), -, Q6,p1

PA8 TIM1_CH1 out Motor 3 (Head), +, Q2 p1

PA9 TIM1_CH2 out

PA10 TIM1_CH3 out Motor 0 (), +, Q1P1

PA11 TIM1_CH4 out Motor 2 (Lift), +, Q4p1,

PA15 digital out Motor 0 (), +, Q1P3. Note: configured as open drain output.

PB0 TIM1_CH2N out Motor 0 (), -, Q5P1

PB1 TIM3_CH4 out Motor 1 (), -, Q7P1

PB5 TIM3_CH2 out Motor 1 (), +, Q3P1

PB12 digital out Motor 3 (Head), +, Q2P3. Note: configured as open drain output.

PF0 digital out Motor 2 (Lift), +, Q4P3. Note: configured as open drain output.

PF1 digital out Motor 1 (), +, Q3P3. Note: configured as open drain output.

The motor encoders use the following pins and functions:

Pin Function Test point Description

PA0 digital HENCA in Head encoder output A

PA1 digital HENCB in Head encoder output B

PB2 digital A in Lift encoder output B

PB3 digital B in Lift encoder output A

PC13 digital out Power control for the encoders. Low is on, otherwise off

PC14 digital RTENC in Right motor encoder.

PC15 digital LTENC in Left tread encoder.

Table 620: Back-pack

LED logic pin map

Table 621: Motor

driver pin map

Table 622: Motor

encoder pin map

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 495

APPENDIX F

File system

This Appendix describes the file systems on Vector’s flash. As the Vector uses the Android boot-

loader, it reuses – or at least reserves – many of the Android partitions76 and file systems. Many

are probably not used. Quotes are from Android documentation.

The file system table tells us where they are stored in the partitions, and if they are non-volatile.

Mount point Partition name Description & Notes

/ BOOT_A The primary linux kernel and initramfs

/data77 USERDATA The data created for the specific robot (and user) that customizes it. A

factory reset wipes out this user data. This portion of the file system is

encrypted using “Linux Unified Key Setup” (LUKS).

/firmware MODEM The firmware for the WiFi/Bluetooth radio, and TrustZone modules

(trustlets). These modules are signed with the processor’s key.

/factory OEM Keys and configurations assigned to the individual robot at the factory,

and some logs.

/persist PERSIST Device specific “data which shouldn't be changed after the device is

shipped, e.g. DRM related files, sensor reg file (sns.reg) and calibration

data of chips; wifi, bluetooth, camera etc.”

/run Internal temporary file system; holding commands for the updating

setting, state of update processes, the fault codes, etc.

/media/ram
/var/volatile
/dev/sm

 Internal temporary file systems; holds temporary files, interprocess

communication

The partition table78 found on the Vector:

Partition name Size Description & Notes

ABOOT 1 MB The primary and backup Android boot loader, which may load the kernel,

recovery, or fastboot. This is in the format of a signed, statically linked ELF

binary.
ABOOTBAK 1 MB

BOOT_A 32 MB These are the primary and backup linux kernel and initramfs. Updates modify the

non-active partition, and then swap which one is active. BOOT_B 32 MB

CONFIG 512 KB This partition is not employed by Vector. It is zero’d out.

DDR 32 KB Configuration of the DDR RAM.

DEVINFO 1 MB This partition is not read by Vector. It is zero’d out.

In typical aboot implementations this partition is used to hold “device

information including: is_unlocked (aboot), is_tampered, is_verified,

charger_screen_enabled, display_panel, bootloader_version, radio_version etc.

76 https://forum.xda-developers.com/android/general/info-android-device-partitions-basic-t3586565
77 This is mounted by “mount-data.service” The file has a lot of information on how it unbricks
78 Much information from: https://source.android.com/devices/bootloader/partitions-images

Table 623: The file

system mount table

Table 624: The

partition table

adapted from Melanie

T

https://forum.xda-developers.com/android/general/info-android-device-partitions-basic-t3586565
https://source.android.com/devices/bootloader/partitions-images

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 496

Contents of this partition are displayed by “fastboot oem device-info” command

in human readable format. Before loading boot.img or recovery.img, [the] boot

loader verifies the locked state from this partition.”

Vector’s aboot will write to this partition to indicate tampering when it finds that

the boot image does not pass integrity checks.

EMR 16 MB This is Vectors “Electronic Medical Record.” It holds Vector’s Model, Serial

Number, and such. It is a binary data structure, rather than a file system.

FSC 1KB “Modem FileSystem Cookies”

FSG 1.5 MB Golden backup copy of MODEMST1, used to restore it in the event of error

KEYSTORE 512 KB “Related to [USERDATA] Full Disk Encryption (FDE)”

MISC 1MB This is “a tiny partition used by recovery to communicate with boot-loader store

away some information about what it's doing in case the device is restarted while

the OTA package is being applied. It is a boot mode selector used to pass data

among various stages of the boot chain (boot into recovery mode, fastboot etc.).

e.g. if it is empty (all zero), system boots normally. If it contains recovery mode

selector, system boots into recovery mode.”

MODEM 64 MB Binary “blob” for the WiFi/Bluetooth radio firmware, and TrustZone trustlets.

These are signed by Anki, and the processor key.

MODEMST1 1.5MB A FAT file-system holding executables and binary “blobs” for the

WiFi/Bluetooth radio firmware, and TrustZone trustlets. These are signed by

Anki, and the processor key. Includes a lot of test code, probably for emissions

testing.

MODEMST2 1.5MB

OEM 16MB A modifiable ext2/4 file system that holds the logs, robot name, some calibration

info, and SDK TLS certificates.

PAD 1MB “related to OEM”

PERSIST 64MB This partition is not employed by Vector. It is zero’d out.

RECOVERY 32 MB An alternate partition holding kernel and initial RAM filesystem that allows the

system boot into a mode that can download a new system. Often used to wipe

out the updates.

RECOVERYFS 640 MB An alternate partition holding systems applications and libraries that let the

application boot into a mode that can download a new system. Often used to

wipe out the updates. This partition holds v0.90 of the Anki software.

RPM 512KB The primary and backup partitions for resource and power management. This is

in the format of a signed, statically linked ELF binary. RPMBAK 512KB

SBL1 512KB The primary and back up partitions for the secondary boot-loader. Responsible

for loading aboot; has an “Emergency” download (EDL) mode using

Qualcomm’s Sahara protocol. This is in the format of a signed, statically linked

ELF binary.

SBL1BAK 512KB

SEC 16KB The secure boot fuse settings, OEM settings, signed-boot-loader stuff

SSD 8KB “Secure software download” for secure storage, encrypted RSA keys, etc

SYSTEM_A 896MB The primary and backup system applications and libraries with application

specific code. Updates modify the non-active partition, and then swap which one

is active.
SYSTEM_B 896MB

SWITCHBOARD 16 MB This is a modifiable data area used by Vic-switchboard to hold persistent

communication tokens. This appears to be a binary data structure, rather than a

file system.

TZ 768KB The primary and backup TrustZone. This is in the format of a signed, statically

linked ELF binary. This code is executed with special privileges to allow

encrypting and decrypting key-value pairs without any other modules (or

debuggers) having access to the secrets.

TZBAK 768KB

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 497

USERDATA 768MB The data created for the specific robot (and user) that customizes it. A factory

reset wipes out this user data. This partition is encrypted using “Linux Unified

Key Setup” (LUKS).

The following files are employed in the Vector binaries and scripts:

File Description

/anki/etc/revision Contains the robot revision number

/anki/etc/version Contains the robot version number

/data/data/com.anki.victor This folder is used to hold outgoing logging information and the

preferences.

/data/data/com.anki.victor/cache/crashDumps This folder is used to hold the minidump files produced when a

program crashes.

/data/data/com.anki.victor/cache/outgoing This folder is used to hold outgoing logs.

/data/data/com.anki.victor/cache/vic-logmgr A folder used to hold the log files while constructing the

compressed archive file that will be uploaded.

/data/diagnostics/ This folder is to holder outgoing logging information as it is

prepared to be sent over Bluetooth LE.

/data/etc/localtime The time zone

/data/etc/robot.pem The robot’s secret key that it used to generate the vic-gateway

public key. This file is created by mount-data.

/data/fault-reports This folder is used to hold the LTTng trace files and copy of the

log; an archive is made from these and placed into the outgoing

logs folder above.

/data/lib/connman/ The WiFi settings (managed by connman) are copied here.

/data/maintenance_reboot This is set when the system has rebooted for maintenance reasons

(e.g. updates)

/data/misc/bluetooth A folder to hold communication structures for the Bluetooth LE

stack.

/data/misc/bluetooth/abtd.socket The IPC socket interface to Anki’s Bluetooth LE service

/data/misc/bluetooth/btprop The IPC socket interface to BlueZ Bluetooth LE service.

/data/misc/camera

/data/panics

/data/data/com.anki.victor/persistent/switchboard
/sessions

Used by Vic-switchboard to hold persistent session information,

e.g. tokens

/data/usb

/data/vic-gateway This folder holds the x509 certificate used by SDK & mobile app,

as well as a table of API tokens used to ensure that the SDK &

mobile app have been authenticated to use the bot.

/dev/block/bootdevice/by-name/emr File system access to the manufacturing records, including serial

number

/dev/block/bootdevice/by-name/switchboard File system access to switchboards persistent data.

/dev/rampost_error The status of the rampost checks of the body board.

/dev/socket/_anim_robot_server_ The IPC socket with Vector’s animation controller

/dev/socket/_engine_gateway_server_ The IPC socket interface to Vector’s Gateway [TBD] server

Table 625: Files

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 498

/dev/socket/_engine_gateway_proto_server_ The IPC socket interface to Vector’s Gateway [TBD] server

/dev/socket/_engine_switch_server_ The IPC socket interface to Vector’s Switchbox [TBD] server

/etc/os-version Contains the OS (linux) version string.

/etc/os-version-rev Contains the OS (linux) revision string.

/proc/sys/kernel/random/boot_id A random identifier, created each boot

/sys/devices/system/cpu/possible
79

/sys/devices/system/cpu/present

The number of CPUs and whether they can be used.

/run/after_maintenance_reboot This is set to indicate to Vectors services that the system was

rebooted for maintenance reasons, and they should take

appropriate action. This will be set, on boot, if

/data/maintenance_reboot had been set.

/run/fake-hwclock-cmd
80

 Sets the fake time to the time file (Vector doesn’t have a clock)

/tmp/vision/neural_nets

Key named device files employed in Vector binaries:

File Description

/dev/fb0 The display frame-buffer for the kernel-based driver.

Used prior to version 1.0.

/dev/spidev0.0 The SPI channel to communicate with the IMU

/dev/spidev1.0 The SPI channel to communicate with the LCD

/dev/ttyHS0 Serial connection with the body-board

/dev/ttyHSL0 Console log

/sys/class/android_usb/android0/iSerial Set to Vector’s serial number

/sys/class/gpio/gpio83 Used to control the camera power

/sys/class/leds/face-backlight-left/brightness LCD left backlight control

/sys/class/leds/face-backlight-right/brightness LCD right backlight control

/sys/devices/platform/soc/1000000.pinctrl/gpio/gpiochip0/base LCD backlight enable (left or right?) GPIO config

/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq The maximum frequency that the CPU can run at.

Initially set to 533MHz

/sys/kernel/debug/msm_otg/bus_voting Disabled to prevent the USB from pinning RAM to

400MHz.

/sys/kernel/debug/rpm_send_msg/message Used to control the RAM controller. The RAM is set

to a maximum of 400MHz.

/sys/devices/soc/1000000.pinctrl/gpio/gpiochip0/base LCD backlight enable (left or right?) GPIO config

/sys/devices/soc.0/1000000.pinctrl/gpio/gpiochip911/base LCD backlight enable (left or right?) GPIO config

/sys/module/spidev/parameters/bufsiz The buffer size for SPI transfers. This is set to the

size of the LCD frame (184 pixels × 96 pixels × 2

bytes/pixel).

79 https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-system-cpu
80 https://manpages.debian.org/jessie/fake-hwclock/fake-hwclock.8.en.html

Table 626: Named

device and control

files

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-system-cpu
https://manpages.debian.org/jessie/fake-hwclock/fake-hwclock.8.en.html

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 499

APPENDIX G

Bluetooth LE Services

& Characteristics

This Appendix describes the configuration of the Bluetooth LE services – and the data access they

provide – for the accessory cube and for Vector.

155. CUBE SERVICES

The basic Bluetooth LE services:

Service UUID81 Description & Notes

Device Info Service
82

 180A16 Provides device and unit specific info –it’s

manufacturer, model number, hardware and

firmware versions

Generic Access Profile
83

 180016 The device name, and preferred connection

parameters.

Generic Attribute Transport
84

 180116 Provides access to the services.

Cube’s Service C6F6C70F-D219-598B-FB4C-

308E1F22F83016
Service custom to the cube, reporting battery,

accelerometer and date of manufacture

Note: It appears that there isn’t a battery service on the Cube. When in over-the-air update mode,

there may be other services present (i.e. by a boot-loader)

Element Value

Device Name (Default) “Vector Cube”

Firmware Revision “v_5.0.4”

Manufacturer Name "Anki"

Model Number "Production"

Software Revision “2.0.0”

81 All values are a little endian, per the Bluetooth 4.0 GATT specification
82 http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
83 http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
84 http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_attribute.xml

Table 627: The

Bluetooth LE services

Table 628: The

Cube’s Device info

settings

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_attribute.xml

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 500

155.1. CUBE’S SERVICES

Values are little-endian, except where otherwise stated.

UUID Access Description & Notes

0EA75290-6759-A58D-7948-598C4E02D94A16 Write Sets the LED patterns

450AA175-8D85-16A6-9148-D50E2EB7B79E16 Read The version string of the application firmware.

This is also the date and time of the firmware

build.

43EF14AF-5FB1-7B81-3647-2A9477824CAB16 Read, Notify,
Indicate

Reads the battery and accelerometer.

Subscribing to this will stream the

accelerometer data.

9590BA9C-5140-92B5-1844-5F9D681557A416 Write OTA update. This is used to send the

application firmware to the Cube.

See chapter 14 for a description of the commands that go over this service.

156. VECTOR SERVICES

Times and other feature parameters:

Service UUID85 Description & Notes

Generic Access Profile 180016 The device name, and preferred connection

parameters

Generic Attribute Transport 180116 Provides access to the services.

Vector’s Serial Service FEE316 The service with which we can talk to Vector.

It appears that there isn’t a battery service on the Vector.

Element Value

Device Name (Default) “Vector” followed by his serial number

156.1. VECTOR’S SERIAL SERVICE

UUID Access Format Notes

30619F2D-0F54-41BD-A65A-
7588D8C85B4516

Read,
Notify,Indicate

7D2A4BDA-D29B-4152-B725-
2491478C5CD716

write

See chapter 13 for a description of the commands that go over this service.

85 All values are a little endian, per the Bluetooth 4.0 GATT specification

Table 629: Cube’s

accelerometer service

characteristics

Table 630: Vector’s

Bluetooth LE services

Table 631: The

Vector’s Device info

settings

Table 632: Vector’s

serial service

characteristics

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 501

APPENDIX H

Servers & Data

Schema

This Appendix describes the servers that Vector contacts86

Server Description & Notes

chipper.api.anki.com:443 The speech recognition engine is contacted thru

this server.

chipper-dev.api.anki.com:443 Development Vectors contact this speech

recognition engine server.

conncheck.global.anki-services.com/ok This server is used to check to see if Vector can

connect to Anki.

conncheck.global.anki-dev-services.com/ok This server is used to check to see if development

Vectors can connect to Anki.

jdocs.api.anki.com:443 Server used to store of some of preferences, usage

stats.

jdocs-dev.api.anki.com:443 Server used by development Vectors to store of

some of preferences, usage stats.

s3://anki-device-logs-dev/victor Development Vectors send their log files here.

token.api.anki.com:443 This server is used to provide the API certificate.87

token-dev.api.anki.com:443 This server is used to provide the API certificate

for development Vectors.

https://anki.sp.backtrace.io:6098/post?format=minidump&toke
n=6fd2bd053e8dd542ee97c05903b1ea068f090d37c7f6bbfa873c5f
3b9c40b1d9

Vector posts crashes (linux minidumps) to this

server. This is hard coded in anki-crashuploader

https://sqs.us-west-2.amazonaws.com/792379844846/DasProd-
dasprodSqs-1845FTIME3RHN

This is used to synchronize with data analytics

services.

https://ota.global.anki-services.com/vic/prod/ Server used to check for updates

https://ota.global.anki-dev-
services.com/vic/rc/lo8awreh23498sf/

For the Developer branch

amazon.com/code

86 Todo: sync up with info at: https://github.com/anki-community/vector-archive
87 Project Victor had a write up, reference that.

Table 633: The

servers that Vector

contacts.

https://github.com/anki-community/vector-archive

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 502

The mobile application contacts the following servers:

Server Description & Notes

https://locations.api.anki.com/1/locations This is used to provide a list of locations to the

mobile application that the Chipper servers will

recognize. Without this, you cannot change

Vector’s location in the mobile application

The Alexa modules contact the following servers:

Server Description & Notes

https://api.amazon.com/auth/O2/ Used to authenticate the account for the Alexa

device.

https://avs-alexa-na.amazon.com The Alexa Voice Service that accepts the spoken

audio and returns a rich intent. Amazon changed

preferred URLs on 2019 May 22, and this is

considered legacy.88

88 https://developer.amazon.com/docs/alexa-voice-service/api-overview.html

Table 634: The

servers that the mobile

application contacts.

Table 635: The

Amazon Alexa Voice

Service servers that

Vector contacts.

https://developer.amazon.com/docs/alexa-voice-service/api-overview.html

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 503

APPENDIX I

Features

The following is the set of application-level feature flags and whether they are enabled (i.e.

sufficiently developed to be used) in Vector:

Feature enabled Description & Notes

ActiveIntentFeedback true

Alexa true The ability to use Alexa

Alexa_AU true The ability to use Alexa, localized for Australia

Alexa_UK true The ability to use Alexa, localized for the UK

AttentionTransfer false

CubeSpinner false

Dancing true The ability for Vector to dance to music.

Exploring true The ability for Vector to explore his area

EyeColorVC true The ability to set Vector’s eye color through a voice command

FetchCube true The ability for Vector to fetch his cube

FindCube true The ability for Vector to find his cube

GazeDirection false

GreetAfterLongTime true

HandDetection true The ability for Vector to spot hands

HeldInPalm true

HowOldAreYou true The ability for Vector to track how long it has been since he was

activated (his age) and use that info to respond to the question “How

old are you?”

Invalid false

Keepaway true

KnowledgeGraph true The ability for Vector to answer a question when asked “Hey Vector,

I have a question…”

Laser false

Messaging false

MoveCube true

PopAWheelie true The ability for Vector pop a wheelie using his cube

PRDemo false

ReactToHeldCube true

ReactToIllumination true

RollCube true The ability for Vector to drive up and roll his cube

Table 636: The

features

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 504

StayOnChargerUntilCharged true

TestFeature false

Volume true The ability to set Vector’s volume by voice command.

The following is the set of AI features (related to, but the same as the feature flags), which identify

an active behavior:

Feature Description & Notes

Alexa This behavior is used to perform Alexa-based interaction.

AskForHelp ? Is Vector asking for help?

BasicVoiceCommand Vector is responding to a wake word and intent.

BeQuiet Vector is responding to the intent TBD to be quiet (make no sounds

and not move).

Blackjack Vector is playing a game of Blackjack.

CantDoThat

ComeHere Vector is going to the speaker.

CubeSpinner

DanceToTheBeat Vector is dancing to music.

Exploring Vector is driving and exploring his area.

FetchCube Vector is fetching his cube.

FindCube Vector is looking for his cube. This is done prior to fetching a cube,

if Vector doesn’t know where it is.

FindHome Vector is looking for his home (the charger). This is done if Vector

needs to charger, and doesn’t know where the charger is.

FistBump If Vector has received a fist bump. Note this can be a result of the

shaking of lifting the cube, driving with the cube, or putting it down.

Frustrated Vector is frustrated and throwing a little tantrum.

GoHome Vector is driving home to his charger, often in response to a low

battery.

HeldInPalm Vector is held in the palm of a hand; he may coo or throw a little

tantrum.

HowOldAreYou Vector has been asked how long it has been since he was activated

(his age) and telling his human.

InteractWithFaces

InTheAir Vector has detected that his in the air. If he thinks he is falling, he

may engage in “tuck and roll” where lowers his lift, and tilts his head

down.

KeepAway

KnowledgeGraph Vector has been ask to answer a question (“Hey Vector, I have a

question…”) and this behaviour is used to perform the rest of the

interaction.

ListeningForBeats Vector thinks that music may be playing and is listening for the beat

of the music to dance to. (He may follow this with the

DanceToTheBeat feature).

LookAtMe Vector is looking for a person face, to look into their gaze.

Table 637: The AI

behaviour features

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 505

LowBattery Vector’s battery level is low and he needs to begin looking for the

charger.

MeetVictor Vector is performing the on-boarding steps.

MoveCube

MovementBackward

MovementForward

MovementLeft

MovementRight

MovementTurnAround

NoFeature When Vector’s mind isn’t doing anything and his mind is blank…

he’ll probably pick exploring, observing, or sleeping as his next

activity.

Observing Vector is looking around.

ObservingOnCharger Vector is looking around while on his charger.

Petting Vector is being petting.

PlayingMessage The messaging features are not yet support.

PopAWheelie Vector is attempting to pop a wheelie using his cube.

ReactToAbuse Vector is responding to verbally abusive statements (represented as

an intent).

ReactToAffirmative Vector is responding to verbal complements (represented as an

intent).

ReactToApology Vector is responding to an apology (represented as an intent).

ReactToCliff Vector has detected a cliff while driving, and is reacting to it.

ReactToGazeDirection Vector has detected a face looking at him (the gaze) and is reacting

to it.

ReactToGoodBye Vector is responding to a verbal goodbye (represented as an intent).

ReactToGoodMorning Vector is responding to a verbal good morning (represented as an

intent).

ReactToHand Vector has seen a hand and is reacting to it.

ReactToHello Vector is responding to a verbal hello (represented as an intent).

ReactToLove Vector is responding to a verbal statement of affection (represented

as an intent).

ReactToNegative Vector is responding to verbal abuse.

ReactToRobotOnSide Vector has fallen (possibly from driving off the edge of his area) and

is on his side.

RecordingMessage The messaging features are not yet support.

RequestCharger Vector is asking his human to help him by putting him on his

charger. This happens if Vector can’t get to his charger – he is stuck

or doesn’t know where it is.

RobotShaken Vector has detected being shaken, like a snow globe

RollBlock The ability for Vector to drive up and roll his cube

SDK

SeasonalHappyHoliday Vector is animating a little celebration video suitable for Christmas

and other holidays.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 506

SeasonalHappyNewYear Vector is animating a little celebration video suitable for New Years.

ShutUp

Sleeping Vector is sleeping, usually on his charging, and waiting for

stimulation.

StuckOnEdge Vector has driven at least one of

TakeAPhoto Vector is taking a photo.

TimerCanceled Vector is cancelling the timer, as part of the timer behavior

TimerChecked Vector is answering “how long is left on the timer”, as part of the

timer behavior.

TimerReminder

TimerRinging Vector is playing the timer ring (i.e. the timer has expired) animation

as part of the timer behavior.

TimerSet

UnmatchedVoiceIntent The cloud wasn’t able to identify an intent based on what was said (if

anything) after the Hey Vector wake word.

VolumeAdjustment Vector’s volume was adjusted by a voice command.

Weather Vector is looking up the weather (from the cloud) and animating the

results.

WhatsMyName Vector is looking for a face and identifying it.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 507

APPENDIX J

Phrases and their

Intent

This Appendix maps the published phrases that Vector responds to and their intent:

Intent Enumeration Phrase

movement_backward 23 Back up

imperative_scold 18 Bad robot

imperative_quiet Be quiet

global_stop 3 Cancel the timer

 Change/set your eye color to [blue, green, lime, orange, purple,

sapphire, teal, yellow].

check_timer 1 Check the timer

imperative_come 10 Come here

imperative_dance 11 Dance.

play_popawheelie 34 Do a wheelstand

imperative_fetchcube 12 Fetch your cube

imperative_findcube 13 Find your cube

play_fistbump 32 Fist Bump

play_fistbump 32 Give me a Fist Bump

movement_backward 23 Go backward

explore_start 2 Go explore

movement_forward 22 Go forward.

movement_turnleft 24 Go left

movement_turnright 25 Go right

system_sleep Go to sleep

system_charger Go to your charger

 Good afternoon

greeting_goodbye 4 Goodbye

 Good evening

greeting_goodnight Good night

greeting_goodmorning 5 Good morning

imperative_praise 16 Good robot

Table 638: The “Hey

Vector” phrases

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 508

seasonal_happyholidays 36 Happy Holidays

seasonal_happynewyear 37 Happy New Year

greeting_hello 6 Hello

 He’s behind you

character_age 0 How old are you

imperative_abuse 7 I hate you.

knowledge_question 27 I have a question …

imperative_love 15 I love you.

imperative_apology 9 I’m sorry.

play_blackjack 31 Let’s play Blackjack

 Listen to music

imperative_lookatme 14 Look at me

 Look behind you

 My name is [Your Name]

imperative_negative 17 No

play_pickupcube 33 Pick up your cube.

play_anygame 29 Play a game

play_anytrick 30 Play a trick

play_blackjack 31 Play Blackjack

play_popawheelie 34 Pop a wheelie.

play_rollcube 35 Roll your Cube

imperative_quiet Quiet down

 Run

set_timer 38 Set a timer for [length of time]

imperative_shutup Shut up

explore_start 2 Start Exploring

 Stop Exploring

global_stop 3 Stop the timer

take_a_photo 40 Take a picture of [me/us]

take_a_photo 40 Take a picture

take_a_photo 40 Take a selfie

movement_turnaround 26 Turn around

movement_turnleft 24 Turn left

{same as be quiet } Turn off

movement_turnright 25 Turn right

imperative_volumelevel 19 Volume [number].

imperative_volumedown 21 Volume down

imperative_volumeup 20 Volume up.

 Volume maximum

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 509

names_ask 28 What's my name?

weather_response 41 What's the weather in [City Name]?

weather_response 41 What's the weather report?

show_clock 39 What time is it?

blackjack_hit

blackjack_playagain

blackjack_stand

global_delete

imperative_lookoverthere

knowledge_response

knowledge_unknown

meet_victor

message_playback

message_record

silence

status_feeling

imperative_affirmative 8 Yes

Note: Vector’s NLP server doesn’t recognize “home” ..

Questions

Subject Example Phrase

Current conversion What's 1000 Yen in US Dollars?

Flight status What is the status of American Airlines Flight 100?

Equation solver What is the square root of 144?

General knowledge What is the tallest building?

places What is the distance between London and New York?

People Who is Jarvis?

Nutrition How many calories are in an avocado?

Sports Who won the World Series?

Stock market How is the stock market?

Time zone What time is it in Hong Kong?

Unit conversion How fast is a knot?

Word definition What is the definition of Artificial Intelligence?

Table 639: The Vector

questions phrases

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 510

User Intent Cloud Intent App Intent Feature Flag

amazon_signin intent_amazon_signin

amazon_signout intent_amazon_signout

blackjack_hit intent_blackjack_hit

blackjack_playagain intent_blackjack_playagain

blackjack_stand intent_blackjack_stand

character_age intent_character_age HowOldAreYou

check_timer intent_clock_checktimer

explore_start intent_explore_start explore_start Exploring

global_delete intent_global_delete_extend

global_stop intent_global_stop_extend

greeting_goodbye intent_greeting_goodbye

greeting_hello intent_greeting_hello

greeting_goodmorning intent_greeting_goodmorning

greeting_goodnight intent_greeting_goodnight

imperative_abuse intent_imperative_abuse

imperative_affirmative intent_imperative_affirmative

imperative_apology intent_imperative_apologize

imperative_come intent_imperative_come intent_imperative_come

imperative_dance intent_imperative_dance intent_imperative_dance

imperative_eyecolor intent_imperative_eyecolor EyeColorVC

imperative_eyecolor_spec
ific

intent_imperative_eyecolor_specific_
extend

 EyeColorVC

imperative_fetchcube intent_imperative_fetchcube intent_imperative_fetchcube FetchCube

imperative_findcube intent_imperative_findcube intent_imperative_findcube FindCube

imperative_lookatme intent_imperative_lookatme intent_imperative_lookatme

imperative_lookoverthere intent_imperative_lookoverthere intent_imperative_lookoverthere GazeDirection

imperative_love intent_imperative_love

imperative_negative intent_imperative_negative

imperative_praise intent_imperative_praise

imperative_scold intent_imperative_scold

imperative_quiet intent_imperative_quiet intent_imperative_quiet

imperative_shutup intent_imperative_shutup intent_imperative_shutup

imperative_volumedown intent_imperative_volumedown Volume

imperative_volumelevel intent_imperative_volumelevel_extend Volume

imperative_volumeup intent_imperative_volumeup Volume

knowledge_question intent_knowledge_promptquestion knowledge_question KnowledgeGraph

knowledge_response intent_knowledge_response_extend knowledge_response KnowledgeGraph

knowledge_unknown intent_knowledge_no_response knowledge_unknown KnowledgeGraph

meet_victor intent_names_username_extend intent_meet_victor

message_playback intent_message_playmessage_extend intent_message_playmessage Messaging

message_record intent_message_recordmessage_extend intent_message_recordmessage Messaging

movement_backward intent_imperative_backup

Table 640: Mapping of

different intent names

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 511

movement_forward intent_imperative_forward

movement_turnaround intent_imperative_turnaround

movement_turnleft intent_imperative_turnleft

movement_turnright intent_imperative_turnright

names_ask intent_names_ask intent_names_ask

play_anygame intent_play_anygame

play_anytrick intent_play_anytrick

play_blackjack intent_play_blackjack

play_fistbump intent_play_fistbump

play_pickupcube intent_play_pickupcube

play_popawheelie intent_play_popawheelie

play_rollcube intent_play_rollcube

play_specific intent_play_specific_extend intent_play_specific

seasonal_happyholidays intent_seasonal_happyholidays

seasonal_happynewyear intent_seasonal_happynewyear

set_timer intent_clock_settimer_extend intent_clock_settimer

show_clock intent_clock_time

silence intent_system_noaudio

status_feeling intent_status_feeling

system_charger intent_system_charger intent_system_charger

system_sleep intent_system_sleep intent_system_sleep

take_a_photo intent_photo_take_extend

unmatched_intent

weather_response intent_weather_extend

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 512

APPENDIX K

Emotion Events

The following is the set of emotion names used by Vector’s mood manager. Some are from

external events. Many whether or not a behavior or action succeeded, or failed (failed with retry,

failed with abort).

 Emotion Name Description and notes

Ambient light ReactToDark

Charger DriveOffCharger Vector was able to drive off of the charger.

 MountChargerSuccess Vector was able to drive onto of the charger

successfully.

 PlacedOnCharger Vector was place on the charger.

Cube CubeSpinner

 KeepawayPounce

 KeepawayStarted

 PickingOrPlacingActionFailedWithAbort Vector was unable to pick up his cube or to place it

successfully, and the action was aborted.

 PickingOrPlacingActionFailedWithRetry Vector was unable to pick up his cube or to place it

successfully, even with retries.

 PickupSucceeded Vector picked up his cube successfully.

 RollSucceeded Vector rolled his cube successfully.

Driving CliffReact Vector encountered a cliff and reacted.

 DrivingActionFailedWithAbort Vector was unable to drive to his target successfully,

and the action was aborted.

 DrivingActionFailedWithRetry Vector was unable to drive to his target successfully,

even with retries.

 DrivingActionSucceeded Vector was able to drive to his target successfully.

 ExploringExamineObstacle Vector found an obstacle (possibly a marked object)

to look at while exploring.

 FoundObservedObject Vector found an object he knows about.

 ReactToObstacle Vector is reacting to the obstacle he encountered

while driving,

Faces DrivingToFace Vector is driving to a face.

 DriveToFaceSuccess Vector was able to drive to a face successfully.

 EnrolledNewFace Vector associated a new face with a name.

 EyeContactReaction Vector detected the gaze of someone looking at him.

 GreetingSayName Vector said the name of someone he recognized.

 InteractWithFaceRetry

Table 641: The

emotion event names

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 513

 InteractWithNamedFace Vector is looking at the face of someone he knows.

 InteractWithUnnamedFace Vector is looking at the face of someone he doesn’t

know.

 LookAtFaceVerified

Intents BeQuietVoiceCommand Vector was told to be quiet.

 FistBumpLeftHanging Vector attempted a fist bump, but no one gave him

one.

 FistBumpSuccess Vector received a fist bump.

 NoValidVoiceIntent The wake word was sent, but an intent was either

unable to be identified, or the returned intent is not

recognized.

 OnboardingStarted Vector has started the process of on boarding his

human companion.

 ReactToTriggerWord The wake word was said, and Vector has reacted to

it.

 RespondToGoodNight Vector responded to a verbal goodnight (represented

as an intent)

 RespondToShortVoiceCommand Vector responded to an intent that didn’t trigger a

more complex behavior interaction.

Motion sensing ReactToMotion

 ReactToPickedUp Vector has been picked up and has reacted to it.

 ReactToUnexpectedMovement

 RobotShaken Vector was shaken.

Power State Asleep Vector is asleep

 Sleeping Vector is sleeping

Petting PettingBlissLevelIncrease Vector is being petted.

 PettingReachedMaxBliss Vector is being petted.

 PettingStarted Vector is being petted.

Sound DanceToTheBeat Vector is dancing to music that he hears (he may be

the only one to hear it)

 ReactToSoundAsleep Vector heard some noise while asleep or sleeping.

 ReactToSoundAwake Vector heard some noise (but wasn’t asleep)

Timer TimerRinging Vector’s timer has expired and is ringing.

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 514

APPENDIX L

DAS Tracked Events

and Statistics

This Appendix captures the events and statistics that are posted to Anki’s the diagnostics /

analytics services (see Chapter 33)

157. DAS TRACKED EVENTS AND STATISTICS

157.1. BASIC INFORMATION

157.1.1 Version Information

The following are version-information related events that are posted to the diagnostic logger:

Event Description & Notes

hal.body_version

robot.boot_info

robot.cpu_info

robot.disk_info

robot.memory_info

157.1.2 Crashes, Faults and other error information

The following are crash, fault and other error related entries:

Event Description & Notes

dasmgr.upload.failed The DAS manager was unable to contact or

successfully upload the DAS events.

log.error There was an error with the logging system,

including errors with DAS manager uploads.

robot.crash The robot software crashed

robot.fault_code The robot fault code explaining which processes

exited or task failed; the same as the one displayed.

robot.imu_failure There was a problem communicating with or

calibrating the IMU

vectorbot.main_cycle_too_late

vectorbot.main_cycle_too_long

Table 642: Version

info, posted to DAS

Table 643: Crash,

fault and error related

DAS events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 515

Note: see the IMU section for events related to IMU

157.1.3 Start-up Information not described elsewhere

The following are start-up events that are posted to the diagnostic logger:

Event Description & Notes

das.allow_upload

ntp.timesync

profile_id.start

profile_id.stop

rampost.lcd_check

random_generator.seed The random number generator was initialized.

robot.engine_ready

robot.init.time_spent_ms

robot.maintenance_reboot Whether or not a maintenance reboot was able to be

performed and, if not, why; or indicates that it is

proceeding.

switchboard.hello

vic.cloud.hello.world

Note: other startup events are covered elsewhere with their functional groups.

157.2. POWER MANAGEMENT EVENTS AND STATISTICS

The power management posts the following set of related events:

Event Description & Notes

behavior.sleeping.falling_asleep

behavior.sleeping.wake_up

engine.power_save.end

engine.power_save.start

hal.active_power_mode

robot.power_off

robot.power_on

vectorbot.prep_for_shutdown

Table 644: Start up

information, posted to

DAS

Table 645: Power

management events,

posted to DAS

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 516

157.2.1 Battery Statistics and Events

The battery management posts the following battery related events and state information:

Event Description & Notes

battery.battery_level_changed This is set when the battery level has changed from

the previous event posting.

battery.encoder_power_stats Information about when the motor encoders were

turned on and off.

battery.fully_charged_voltage The battery voltage seen when the charger reported

the battery to be fully charged.

battery.periodic_log

battery.voltage_reset

battery.voltage_stats Information about the range of battery voltages that

have been observed; e.g. min/max, average, etc.

rampost.battery_flags

rampost.battery_level

157.2.2 Charger Statistics and Events

The charging function of the battery management system posts the following events and state

information:

Event Description & Notes

battery.is_charging_changed This is set when the state of charging has changed

from event posting.

battery.on_charger_changed

battery.saturation_charging

robot.off_charger

robot.on_charger

Event Description & Notes

battery.cooldown Indicates that Vector is or needed to pause charging

and activity to let the battery cool down.

battery.temp_crossed_threshold The battery – or body-board – got too hot.

battery.temperature_stats Information about the range of battery temperatures

that have been observed; e.g. min/max, average,

etc.

cpu.temperature_stats

rampost.battery_temperature

Table 646: Battery

level events and

statistics

Table 647: Charger

statistics and events,

posted to DAS

Table 648: Thermal

management statistics

and events, posted to

DAS

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 517

157.3. SENSOR STATISTICS AND EVENTS

157.3.1 IMU Events

The IMU and navigation subsystem posts the following events and statistics:

Event Description & Notes

gyro.bias_detected

gyro.drift_detected

imu_filter.fall_impact_event

imu_filter.falling_event

imu_filter.gyro_calibrated

157.3.2 Microphone & Sound Events

The system posts the following events and state information related to Vector’s microphones:

Event Description & Notes

behavior.trigger_word.dropped

behavior.voice_command.dropped

mic_data_system.speech_trigger_recogni
zed

robot.microphone_on

robot.reacted_to_sound

robot. stuck_mic_bit

wakeword.triggered

wakeword.vad

157.3.3 Proximity Sensor Statistics and Events

The system posts the following events and state information related to Vector’s proximity sensors:

Event Description & Notes

hal.invalid_prox_reading_report

hal.severe_invalid_prox_reading_report

robot.cliff_detected

robot.bad_prox_data

157.3.4 Touch Sensor Statistics and Events

The system posts the following touch-related events and state information:

Event Description & Notes

touch_sensor.activate_charger_mode_ch
eck

Table 649: IMU,

navigation events

Table 650:

Microphone statistics

and events, posted to

DAS

Table 651: Proximity

sensor statistics and

events, posted to DAS

Table 652: Touch

sensor statistics and

events, posted to DAS

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 518

touch_sensor.baseline_fast_calibration_fi
nished

touch_sensor.baseline_reading_differenc
e_monitor_too_low

touch_sensor.charger_mode_check.baseli
ne_changed

touch_sensor.charger_mode_check.no_ba
seline_change

157.4. MOTOR STATISTICS AND EVENTS

The motor controllers post the following events and statistics:

Event Description & Notes

calibrate_motors

head_motor_calibrated

head_motor_uncalibrated

lift_motor_calibrated

lift_motor_uncalibrated

157.5. COMMUNICATION RELATED EVENTS POSTED TO DAS

157.5.1 Body-Board / Spine Related Events Posted to DAS

The communication with the body-board controller posts the following events:

Event Description & Notes

rampost.dfu.desired_version

rampost.dfu.open_file

rampost.dfu.installed_version

rampost.dfu.request_version

rampost.rampost.exit The rampost has completed and exited.

rampost.spine.configure_serial_port The rampost program was successful in configuring

the serial port to communicate with the body-board.

rampost.spine.open_serial The rampost was able to open the serial port to

communicate with the body-board.

rampost.spine.select_timeout There was a timeout in communicating with

rampost the body-board.

Note: see the updates section for events related to updating the body-board firmware

Table 653: Motor

events

Table 654: Body-

board / spine related

DAS events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 519

157.5.2 Bluetooth LE / WiFi Related Events Posted to DAS

The wireless communication posts the following events:

Event Description & Notes

ble.connection

ble_conn_id.start

ble_conn_id.stop

ble.disconnection

dasmgr.upload.stats

dasmgr.upload.failed

robot.cloud_response_failed

robot.wifi_info

robot.sdk_wrong_version

wifi_conn_id.start

wifi_conn_id.stop

wifi.connection

wifi.disconnection

wifi.initial_state

157.5.3 Accessory-Related Events Posted to DAS

The communication with the mobile application and SDK posts the following events:

Event Description & Notes

cube.battery_voltage The cube’s battery voltage

cube.connected Vector was able to connect to his accessory

companion cube.

cube.connection_failed Vector was unable to connect to his accessory

companion cube.

cube_connection_coordinator.connection
_requested

cube_connection_coordinator.disconnect
_requested

cube_connection_coordinator.unexpecte
d_disconnect

cube.disconnected Vector lost the connection with his accessory

companion cube.

cube.firmware_mismatch Vector is unable to use his accessory companion

cube as is, since the firmware version is not

compatible.

cube.low_battery

cube.scan_result

cube.unexpected_connect_disconnect

Note: see the updates section for events related to updating the cube firmware

Table 655: Bluetooth

LE, WiFi related DAS

events

Table 656: Accessory

cube related DAS

events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 520

157.6. SETTINGS AND PREFERENCES EVENTS

The following are settings and preference related events that are posted to the diagnostic logger:

Event Description & Notes

das.allow_upload Whether or not the account owner – Vector’s

human – has opted in (true) or opted out (false) of

data gathering, allowing the DAS events to be

uploaded to the servers.

dasmgr.upload.stats

engine.language_locale The IETF language tag of the human companion’s

language preference – American English, UK

English, Australian English, German, French,

Japanese, etc.

default: “en-US”

robot.cleared_user_data

robot.locale The IETF language tag of the human companion’s

language preference – American English, UK

English, Australian English, German, French,

Japanese, etc.

default: “en-US”

robot.settings.passed_to_cloud_jdoc

robot.settings.updated

robot.settings.volume

robot.timezone The “tz database name” for time zone to use for the

time and alarms.

default: “America/Los_Angeles”

sdk.activate

Table 657: Settings

and preferences

events posted to DAS

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 521

157.7. UPDATE-RELATED EVENTS POSTED TO DAS

The following are events are posted by the update subsystem:

Event Description & Notes

cube.firmware_flash_success True if the cube’s firmware was successfully

updated.

rampost.dfu.desired_version The version of firmware desired for the body-

board.

rampost.dfu.installed_version The version of firmware presently on the body-

board.

rampost.dfu.open_file Opening the body-board firmware update file.

rampost.dfu.request_version

robot.ota_download_end On success the parameters include the new version;

on failure the parameters include the version

identifier, error code, and some explanatory text.

robot.ota_download_stalled The OTA update engine download process has

gotten stuck.

robot.ota_download_start The OTA update engine has started the process of

downloading an OTA file.

157.8. VISION & NAVIGATION RELATED EVENTS POSTED TO DAS

The vision, mapping, and navigation subsystem posts the following events and statistics:

Event Description & Notes

robot.docking.status

robot.delocalized

robot.delocalized_map_info

robot.dock_action_completed

robot.fallback_planner_used

robot_impl_messaging.handle_robot_stop
ped

robot.object_located

robot.obstacle_detected

robot.offtreadsstatechanged

robot.plan_complete

robot.planner_selected

robot.too_long_in_air

robot.vision.image_quality

robot.vision.profiler.

Table 658: Update

events

Table 659: Vision,

mapping, navigation

events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 522

Events related to the charger posts the following events and statistics:

Event Description & Notes

find_home.result

behavior.find_home.invalid_turn_angle

go_home.charger_not_visible

go_home.result

robust_observe_charger.stats

The face recognition subsystem posts the following events and statistics:

Event Description & Notes

behavior.findfaceduration

robot.vision.detected_pet

robot.vision.face_recognition.immediate
_recognition

robot.vision.face_recognition.persistent_
session_only

robot.vision.loaded_face_enrollment_ent
ry

robot.vision.remove_unobserved_session_
only_face

robot.vision.update_face_id

turn_towards_face.might_say_name

turn_towards_face.recognition_timeout

Table 660: Home &

charger events

Table 661: Face

recognition events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 523

157.9. BEHAVIOUR, FEATURE, MOOD, AND ENGINE RELATED EVENTS POSTED TO DAS

The engine/animation controller posts the following behavior-related events:

Event Description & Notes

action.play_animation The specified animation will be played

AkAlsaSink

behavior.cliffreaction

behavior.cycle_detected

behavior.exploring.end

behavior.exploring.poke

behavior.feature.end A behavior has completed. (s1 has the name of the

behavior that ended)

behavior.feature.pre_start The behaviour for specified feature will begin.

behavior.feature.start The behaviour for specified feature has begun.

behavior.hlai.change There was a change in the high-level AI state.

Some possible supplemental parameters include

“ObservingOnCharger”

Behavior.PutDownReaction

engine.state

mood.event

mood.simple_mood_transition

robot.dizzy_reaction

Event Description & Notes

dttb.activated The “dance to the beat” feature has been activated.

dttb.cancel_beat_lost

dttb.coord_activated The “dance to the beat” coordinator has been

started and is trying to synchronize with the beat of

the music.

dttb.coord_no_beat

dttb.end

Table 662: Behaviour,

feature, mood and

engine related DAS

events

Table 663: Dance to

the beat related DAS

events

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 524

APPENDIX M

Pleo

The Pleo, sold in 2007 – a decade prior to Vector – has many similarities. The Pleo was a soft-

skinned animatronic baby dinosaur created by Caleb Chung, John Sosuka and their team at Ugobe.

Ugobe went bankrupt in 2009, and the rights were bought by Innvo Labs which introduced a

second generation in 2010. This appendix is mostly adapted from the Wikipedia article and

reference manual.

Sensing for interacting with a person

 Two microphones, could do beat detection allowing Pleo to dance to music. The second

generation (2010) could localize the sound and turn towards the source.

 12 touch sensors (head, chin, shoulders, back, feet) to detect when petted,

Environmental sensors

 Camera-based vision system (for light detection and navigation). The first generation

treated the image as gray-scale, the second generation could recognize colors and patterns.

 Four ground foot sensors to detect the ground. The second generation could prevent falling

by detecting drop-offs

 Fourteen force-feedback sensors, one per joint

 Orientation tilt sensor for body position

 Infrared mouth sensor for object detection into mouth, in the first generation. The second

generation could sense accessories with an RFID system.

 Infrared detection of objects

 Two-way infrared communication with other Pleos

 The second generation include a temperature sensor

Annuciators and Actuators

 2 speakers, to give it sounds

 14 motors

 Steel wires to move the neck and tail (these tended to break in the first generation)

The processing

 Atmel ARM7 microprocessor was the main processor.

 An NXP ARM7 processor handle the camera system, audio input

 Low-level motor control was handled by four 8-bit processors

A N K I V E C T O R · 2 0 2 1 . 0 2 . 1 4 525

A developers kit – originally intended to be released at the same time as the first Pleo – was

released ~2010. The design included a virtual machine intended to allow “for user programming

of new behaviors.”89

157.10. SALES

Pleo’s original MSRP was $350, “the wholesale cost of Pleo was $195, and the cost to manufacture

each one was $140” sold ~100,000 units, ~$20 million in sales90

The second generation (Pleo Reborn) had an MSRP of $469

157.11. RESOURCES

Wikipedia article. https://en.wikipedia.org/wiki/Pleo

iFixit’s teardown. https://www.ifixit.com/Teardown/Pleo+Teardown/597

Ugobe, Pleo Monitor, Rev 1.1, 2008 Aug 18

Ugobe, Pleo Programming Guide, Rev 2, 2008 Aug 15

89 https://news.ycombinator.com/item?id=17755596
90 https://www.idahostatesman.com/news/business/article59599691.html

https://www.robotshop.com/community/blog/show/the-rise-and-fall-of-pleo-a-fairwell-lecture-by-john-sosoka-former-cto-of-ugobeJohn
Sosoka

https://en.wikipedia.org/wiki/Pleo
https://www.ifixit.com/Teardown/Pleo+Teardown/597
https://news.ycombinator.com/item?id=17755596
https://www.idahostatesman.com/news/business/article59599691.html
https://www.robotshop.com/community/blog/show/the-rise-and-fall-of-pleo-a-fairwell-lecture-by-john-sosoka-former-cto-of-ugobeJohn%20Sosoka
https://www.robotshop.com/community/blog/show/the-rise-and-fall-of-pleo-a-fairwell-lecture-by-john-sosoka-former-cto-of-ugobeJohn%20Sosoka

